

Troi Serial Plug-in 2.2
USER GUIDE
October 2001

Troi Automatisering
Vuurlaan 18
2408 NB Alphen a/d Rijn
The Netherlands
Fax: +31-172-470539

You can also visit the Troi web site at: <http://www.troi.com/> for additional information.

Troi Serial Plug-in is copyright 1999-2001 of Troi Automatisering.All rights reserved

Table of Contents

Installing plug-ins.. 1
If You Have Problems.. 1
What can this plug-in do?.. 2
Getting started 2

Using external functions... 2
Where to add the External Functions?.. 2
Simple example.. 3

Summary of functions... 3
Steps for working with the Troi Serial Plug-in... 4
Specifying the port settings.. 4
Specifying the handshaking options.. 6
Receiving data via Dispatch Scripting 8

Dispatch Scripting using Script Name... 8
Dispatch Scripting using a Key... 9
Script Triggering on a Match String.. 9

Controlling input from the Serial Port ... 12

Function Reference ... 14
Serial-Close 14
Serial-Control 15
Serial-DataWasReceived 16
Serial-GetPortNames 17
Serial-Open 18
Serial-Receive 19
Serial-RestoreSituation 21
Serial-Send 22
Serial-SetDispatchScript 24
Serial-ToASCII 25
Serial-Version 26

Appendix A: ASCII Table

i

Installing plug-ins

 For MacOS:
n Quit FileMaker Pro.
n Put the file “Troi Serial Plug-in” and the file “Troi Serial X extension” from the

folder “MacOS Plug-in” into the “FileMaker Extensions” folder in the FileMaker Pro
folder.

n If you have installed previous versions of this plug-in, you are asked: “An older item
named “Troi Serial Plug-in” already exists in this location. Do you want to replace it
with the one you’re moving?’. Press the OK button.

n Start FileMaker Pro. The first time the Troi Serial Plug-in is used it will display a
dialog box, indicating that it is loading and showing the registration status.

For Windows:
n Quit FileMaker Pro.
n Put the file "trserial.fmx" from the directory "Windows Plug-in" into the "SYSTEM" subdirectory in

the FileMaker Pro directory.
n If you have installed previous versions of this plug-in, you are asked: “This

folder already contains a file called 'trserial.fmx'. Would you like to replace the
existing file with this one?’. Press the Yes button.

n Start FileMaker Pro. The Troi Serial Plug-in will display a dialog box,
indicating that it is loading and showing the registration status.

TIP You can check which plug-ins you have loaded by going to the plug-in preferences: Choose Preferences
from the Edit menu, and then choose Plug-ins.

You can now open the file "All Serial Examples.fp5" to see how to use the plug-in's functions. There is also a
Function overview available.

If You Have Problems

This user guide tries to give you all the information necessary to use this plug-in. So if you have a problem
please read this user guide first. If that doesn't help you can get free support by email. Send your questions to
support@troi.com with a full explanation of the problem. Also give as much relevant information (version of
the plug-in, which platform, version of the operating system, version of FileMaker Pro) as possible.

If you find any mistake in this manual or have a suggestion please let us know. We appreciate your feedback!

TIP You can get more information on returned error codes from our OSErrrs database on our web site:
<http://www.troi.com/software/oserrrs.html>. This free FileMaker database lists all error codes for Windows
and Mac OS!

1

What can this plug-in do?
The Troi Serial Plug-in adds serial functions to to FileMaker Pro. With this plug-in you can read and write to
any serial port that is available on your computer.

NOTE USB ports are not supported. USB is a bus protocol that can be used from various purposes and
devices, like keyboards, harddisks, CD-ROM drives, adaptors, cameras. All these devices need specific drivers.
We have currently no plans to create a USB plug-in. Note however that the Troi Serial Plug-in is reported to be
working with the USB to Serial adapters.

Getting started

Using external functions

The Troi Serial Plug-in adds new functions to the standard functions that are available in FileMaker Pro. The
functions added by a plug-in are called external functions. You can see those extra functions for all
plug-ins at the top right of the Specify Calculation Box:

You use special syntax with external functions: External("function name",parameter) where function name is
the name of an external function. The parameter is required, even if it's only "". Plug-ins don't work directly
after installation. To access a plug-in function, you need to add the calls to the function in a calculation for
example in a text calculation in Define Fields or in a ScriptMaker Script.

IMPORTANT In the United States, commas act as list separators in functions. In other countries semicolons
might be used as list separators. The separator being used depends on the operating system your computer uses,
as well as the separator used when the file was created. All examples show the functions with commas. For
example: External("Serial-Version", "") will become External("Serial-Version";
"") in such a file.

Where to add the External Functions?

External functions for this plug-in are intended to be used in a script step using a calculation. For most
functions of this plug-in it makes no sense to add them to a define field calculation, as the functions will have
side effects.

2

Select External functions
to see all the plug-ins

Plug-in Names

External Functions
shown here

An External
function

Simple example

We start with a simple example to get you started. Create a new database, with a global text field called
gPortNames. Create a new ScriptMaker Script called "Get Serial Port Names". Delete all steps and then add the
following script step:

Set Field [gPortNames, External("Serial-GetPortNames", "")]

Performing this script will return all the serial ports that can be found on this computer, separated by returns.

On Windows the result will be something like this:
COM1¶
COM2¶
COM3¶
COM4¶

NOTE Function names, like Serial-GetPortNames are case sensitive. Be sure to spell them right, or get
them from the External Functions list at the top right of the "Specify Calculation" dialog.

Please take a close look at the included example files, as they provide a great starting point. From there you can
move on, using the functions of the plug-in as building blocks. Together they give you great new tools!

Summary of functions

The Troi Serial Plug-in adds the following functions:

function name short description
Serial-Version check for correct version of the plug-in
Serial-GetPortNames returns the names of all serial ports that are available on the computer
Serial-Open opens a serial port
Serial-Close closes a serial port
Serial-Receive receives data from a serial port
Serial-Send send data to a serial port
Serial-SetDispatchScript tell the plug-in which script to call when data is received
Serial-DataWasReceived returns if data was received on a open port
Serial-RestoreSituation tell the plug-in to bring the original file back to the front
Serial-ToASCII converts (one or more) numbers to their equivalent ASCII characters
Serial-Control suspends and resumes input from a serial port

3

Steps for working with the Troi Serial Plug-in
Below you find an overview of the main steps needed to communicate with a serial port:

1 - Find available ports

Use the function “Serial-GetPortNames” to get the names of all serial ports that are available on the computer
and let the end user choose a port.

2 - Open the selected port

Use the function “Serial-Open” to open a port. Optionally use the function “Serial-SetDispatchScript” to
specify which script is triggered when data comes in from the Serial port.

3 - Communicate with the serial port

Use the functions “Serial-Send” and “Serial-Receive” to send and receive data to and from a serial port
You can use other functions, like “Serial-DataWasReceived” and “Serial-RestoreSituation” to help you get the
data into a FileMaker database.

4 - Close the serial port

At the end of the communication you need to close the serial port.

Specifying the port settings
Default port settings

A serial port can be configured in a lot of ways. These settings can be set by specifying switches. If you don't
specify any switches the port is initialised to the following settings: a speed of 9600 baud, no parity, 8 data bits,
1 stop bit, no handshaking. If you want to use this setting open the port like this:

Set Field[gErrorCode, External("Serial-Open", "COM2")]

Specifying other port settings

It is recommended that you set the port settings explicitly. Give the settings by concatenating the desired
settings keywords. You specify them like this:

Set Field[gErrorCode, External("Serial-Open",
 "COM2| baud=9600 parity=none data=8 stop=10 flowControl=XOnXOff")]

You can set the speed, the parity, the number of data and stopbits, and the handshaking to use. Note that the
order of the keywords and case are ignored. All keywords are optional and should be separated by a space or a
return.

4

Specifying the port speed

The port speed indicates how quick a the data is transported over the serial line.
Allowed values for the port speed are:

baud=1800
baud=2400
baud=3600
baud=4800

baud=7200
baud=9600
baud=14400
baud=19200

baud=28800
baud=38400
baud=57600

baud=115200
baud=230400

baud=150
baud=300
baud=600
baud=1200

NOTE Not all speeds may be supported on all serial ports. Check the documentation of the computer and the
equipment you want to connect.

You need to specify the same speed that the other equipment is using. Higher port speeds can result in loss of
data if the serial cable can't cope with this speed. If this happens try a lower speed.

Specifying the bit format options

Data over a serial port is sent in small packet of 4 to 10 bits. This packet consists of 4-8 data bits, followed by a
parity bit and stopbits.

Data bits
You can specify the number of the data bits by adding one of the datasize keywords to the switch parameter.
The most used value is 8 data bits. Allowed values for the number of data bits are:

data=4 data=5 data=6 data=7 data=8

Parity bits
You can specify the parity bit by giving adding one of the following keywords to the switch parameter:

parity=none parity=odd parity=even

Stop bits
You can specify the number of stopbits by giving adding one of the following keywords to the switch
parameter:

stop=10 stop=15 stop=20

Here stop=10 means 1 stop bit, stop=15 means 1.5 stopbit and stop=20 means 2 stopbits.

5

Specifying the handshaking options
Handshaking is a way to ensure that the transfer of data can be stopped temporarily. This also called (data) flow
control. A serial port can use hardware handshaking and software handshaking. For hardware handshaking to
work the serial cable must have wires to support it.

Using the Serial-Open function this plug-in allows a basic way to set the handshaking and also an advanced
way, which gives more options, but most users probably don't need.

Basic handshaking options

Basic handshaking has 3 keywords:

flowControl=DTRDSR flowControl=RTSCTS flowControl=XOnXOff

You can specify one or more of these flow control keywords. You should specify at least one of these
keywords. Try flowControl=DTRDSR as this is mostly supported. FlowControl=DTRDSR and flowControl=RTSCTS
are hardware handshaking options, for which you need proper cabling. FlowControl=XOnXOff is a software
based handshake option.

FlowControl=DTRDSR means that the signal DTR is used for input flow control and DSR for output flow control.
FlowControl=RTSCTS means that the signal RTS is used for input flow control and CTS for output flow control.
FlowControl=XOnXOff uses a XOff character (control-S) and a XOn character (control-Q) to stop input and
output flow.

IMPORTANT Do not use FlowControl=XOnXOff if you want to transfer binary data, like pictures. This protocol
uses two ASCII characters that might also be in the binary data. FlowControl=XOnXOff works fine with normal
text.

Example 1

Set Field[gErrorCode, External("Serial-Open",
 "COM2| baud=9600 parity=none data=8 stop=10 flowControl=DTRDSR")]

This will set the port to use DTR/DSR hardware handshaking.

Example 2

Set Field[gErrorCode, External("Serial-Open",
 "COM2| baud=9600 parity=none data=8 stop=10 flowControl=DTRDSR

flowControl=RTSCTS flowControl=XOnXOff")]

This will set the port to use all 3 types of handshaking in parallel.

6

Advanced handshaking options

Advanced handshaking options allows you more control over the serial port settings. It enables you to set the
handshaking of the output an input separately.

With advanced handshaking you can use the following keywords:

keyword meaning
inputControl=XOnXOff use XOnXOff for input handshaking
outputControl=XOnXOff use XOnXOff for output handshaking

inputControl=RTS use RTS for input handshaking
outputControl=CTS use CTS for output handshaking

inputControl=DTR use DTR for input handshaking
outputControl=DSR use DSRfor output handshaking

DTR=enabled set DTR signal permanent to high
DTR=disabled set DTR signal permanent to low
RTS=enabled set RTS signal permanent to high
RTS=disabled set RTS signal permanent to low

Below you find how the basic handshaking keywords relate to the advanced handshaking keywords:

basic keyword = the same as 2 advanced keywords
flowControl=XOnXOff = inputControl=XOnXOff outputControl=XOnXOff
flowControl=RTSCTS = inputControl=RTS outputControl=CTS
flowControl=DTRDSR = inputControl=DTR outputControl=DSR

The other advanced keywords don't have a equivalent.

NOTE You can mix the basic handshaking keywords with the advanced handshaking keywords, as long as this
is sensible.

Example 1

If you want to use DTR handshaking for input flow control and CTS for output flow control use the following
settings to open COM1:

Set Field[gErrorCode, External("Serial-Open",
 "COM1| baud=9600 parity=none data=8 stop=10

outputControl=CTS inputControl=DTR")]

Example 2

If you want to enable the DTR signal and use XOnXOff input flow control use the following settings to open
COM1:

Set Field[gErrorCode, External("Serial-Open",
 "COM1| baud=9600 parity=none data=8 stop=10

DTR=enabled inputControl=XOnXOff")]

7

Example 3

Set Field[gErrorCode, External("Serial-Open",
 "COM2 | baud=9600 data=7 parity=odd stop=20

flowControl=XOnXOff outputControl=CTS inputControl=DTR")]

This shows that XOnXOff is used for input and output flow control and also DTR handshaking for input flow
control and CTS for output flow control.

Receiving data via Dispatch Scripting™

FileMaker 5.0 added support for ActiveX on Windows. Together with Apple Event support on the Mac it is
now possible on all platforms to trigger scripts by name. The 2.0 version of the Serial Plug-in implemented
these automation features, by extending the Dispatch Scripting mechanism. It is now possible to tell the plug-in
the name of the script to be triggered. It is no longer needed that this script is visible in the Scripts Menu.

NOTE Starting with version 2.2 it is now also possible to trigger scripts via names when running FileMaker 4
on the Windows platform, or runtimes created with FileMaker Developer 5 and FileMaker Developer 5.5 on
Windows.
For compatibility the original Dispatch Scripting via a key (see below) is still available.

Functions to implement Dispatch Scripting

The following external functions help in achieving the receiving of data via the Dispatch Script.

........Serial-SetDispatchScript tell the plug-in which (Dispatch) script to call when data is received

........Serial-DataWasReceived returns 1 when data was received on a open port

........Serial-RestoreSituation tell the plug-in to bring the original file back to the front

-> See the sample file Dispatch.fp5 for a working example.

Dispatch Scripting using Script Name

This method of triggering a script when there is data received is the preferred way. Usually you set the dispatch
script once after you have opened the serial port.

8

Example "Set Dispatch Script with name"

Below you find a sample Set Dispatch Script:

Set Field [gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) & "| scriptname=Process Data Received")]

If [Left(gErrorCode, 2) = "$$"]
Beep
Show Message [An error occurred while setting the dispatch script]
Halt Script

End If

This tells the plug-in to trigger the script Process Data Received whenever incoming data from (one of) the
serial port(s) is available. In the script Process Data Received you can retrieve the incoming data, and store it,
and do any other processing.

Dispatch Scripting using a Key

This plug-in also has a different way to execute a script when data has been received. This is done via a
Dispatch Script with a key. If you want this functionality you need to implement the Dispatch functions in your
database. This is how this can be done:

During development

You have to implement this once:
- write the Dispatch Script or change an existing script
- include the Dispatch Script in the menu, so it can be called from the keyboard with control-1 to
 control 9 (Windows) or command-1 to command-9 (Mac)
- write a "Start receiving script" that

• opens the serial port
• and tells the plug-in which is the Dispatch Script.

When Running the database

When the database is running and you want to begin receiving:
- perform the "Start receiving script".

This tells the plug-in for example that the Dispatch Script can be called from the keyboard with control-1
(Windows) or command-1 (Mac).

This is what happens when data arrives:
- the plug-in will bring the database file to the front and simulate a press on the keyboard:control-1
 (Windows) or command-1(Mac).
- this will start the Dispatch Script, which can handle the receiving of the data.

NOTE You can still use the Dispatch Script for other actions, so this doesn't cost a place in the menu. That's
why we call it a dispatching script: when called it determines if it was called because there was data received
and if yes it will dispatch the processing.

9

Example Dispatch Script

Below you find a sample "To Menu" Dispatch Script:

If [External("Serial-DataWasReceived", "")]
Perform Script [Sub-scripts, "Process Data Received"]

Else
Enter Browse Mode []
Go to Layout [“Menu”]
Halt Script

End If

This script checks if there is data received. If this is the case it dispatches to the script "Process Data
Received" which receives the data and puts it into a field. Else it will do its normal business (going to a menu).

Make sure you include this script in the menu. We assume this script can be performed with the keyboard
shortcut :control-1 (Windows) or command-1 (Mac)

Example Process Data Received Script

Below you find a sample "Process Data Received" script, which gets the data from the plug-in into the
field mesReceived.

Enter Browse Mode []
Perform Script [Sub-scripts, "Receive Data in global gTempResultReceived"]
Set Field [mesReceived, mesReceived & gTempResultReceived]
Set Field [gErrorCode, External("Serial-RestoreSituation", "")]

Example "Set Dispatch Script" Script

Below you find a sample "Set Dispatch Script" Script:

Set Field [gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) & "| scriptkey=1")]

If [Left(gErrorCode, 2) = "$$"]
Beep
Show Message [An error occurred while setting the dispatch script]
Halt Script

End If

Example Start Receiving Script

Below you find a sample "Start Receiving" script:

Perform Script [Sub-scripts, "Open Serial Port"]
Perform Script [Sub-scripts, "Set Dispatch Script"]

When you want to begin receiving perform the "Start receiving script".

10

Script Triggering on a Match String
The Serial plug-in can look for a special match string that has to arrive at the input buffer before the it triggers a
script. When you specify the dispatch script, you can add the waitformatch parameter.

The script step below will set a dispatch script Process Data Received , which is only triggered after the
string OK is received in the input buffer.

Set Field [gErrorCode, External("Serial-SetDispatchScript" ,
Status(CurrentFileName) &
"| scriptname=Process Data Received" &
"| waitformatch=OK")]

The script step below will set a dispatch script Process Data Received , which is only triggered after a CR
(carriage return) character, followed by a LF (linefeed) character is received. These are the ASCII characters
0x0D and 0x0A respectively. (See the ASCII Table in Appendix A)

Using the ToASCII function we set the matchstring like this:

Set Field [gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) &
"| scriptname=" & "Process Data Received" &
"| waitformatch=" & External("Serial-ToASCII", "OxOD|Ox0A")]

You can specify any string up to 25 characters.

11

Controlling input from the Serial Port
The function “Serial-Control” controls the serial port . With this function you can suspend or resume the
incoming data. This command is very useful for devices that send out continuous data, like an electronic
weighing scale.

NOTE The buffer will be emptied when the port is suspended. So when you give the resume command only
the data received after this command will be received.

NOTE You can continue to send data to the serial port.

Example 1

Set Field[gResult, External("Serial-Control" , "Modem port|suspend")]

This will suspend the incoming stream of data from the Modem port.

Set Field[gResult, External("Serial-Control" , "Modem port|resume")]

This will resume the previously resumed incoming stream of data from the Modem port.

Example 2

Say you have an electronic weighing scale that sends data to the serial port continuously. The data is in this
form:

1200 kg net CR LF
1199 kg net CR LF
1200 kg net CR LF
1200 kg net CR LF
etc...

You are only interested in this data when you are actually weighing something. So the best way to handle this is
to open the serial port and then suspend this port. When you want to measure something you send a resume
command, and gather a full line of data, the suspend the port again.

You need to define these fields:

gPortName global text field, to hold the portname
gErrorCode global text field, to hold the error code in
weight number field, to store the weight

When starting up the database you issue these commando in a startup script:

Set Field[gPortName,"COM2"]
Set Field[gErrorCode, External("Serial-Open" , gPortName & "|baud=19200")]
If[gErrorCode = 0]

 Set Field[gErrorCode, External("Serial-Control" , gPortName & "|suspend")]
Endif

This will open the port and then wait till further notice.

12

When the user of the database presses a button you start this Measure Now script:

Set Field [gTempResultReceived, ""]
Set Field [gTempBuffer, ""]
Set Field [gNumber, 10]

Comment [Resume the incoming data...]
Set Field [gErrorCode, External("Serial-Control", gPortName & "| resume")]
If [gErrorCode = 0]
 Loop

Perform Script [Sub-scripts, Receive Data in global gTempResultReceived]
Set Field [gTempBuffer, gTempBuffer & gTempResultReceived]
Exit Loop If [PatternCount(gTempBuffer , "¶") >= 2 or gErrorCode <> 0]
Pause/Resume Script [0:00:01]
Set Field [gNumber, gNumber - 1]
If [gNumber = 0]

Set Field [gErrorCode, -1]
End If

 End Loop
 Set Field [gNumber, External("Serial-Control", gPortName & "| suspend")”]
End If
Perform Script [Sub-scripts, Store Measure Results]

The Measure Now script resets the buffers, then resumes the incoming data. Inside the loop the data is
received until there are 2 returns in the buffer, which means a complete line was received. The script then
suspends the port again and then the script Store Measure Results is called to store the results in a record.

To prevent this looping forever when no data is received we also use a counter, gNumber. It starts at 10 and is
lowered every time through the loop. After 10x the script gives up and an error code of -1 is set, to get out of
the loop.

Here is the Store Measure Results script:

If [gErrorCode = 0 and PatternCount(gTempBuffer , "¶") >= 2]
New Record/Request
Comment [Cut off at the end of the line]
Set Field [gTempBuffer, Left(gTempBuffer,

Position(gTempBuffer, "¶", Length(gTempBuffer) , -1) - 1)]
Comment [Copy one line from the end...]
Set Field [Weight, Middle(gTempBuffer,

Position(gTempBuffer, "¶", Length(gTempBuffer) , -1) + 1, Length(gTempBuffer)
)]

Else
Beep
Show Message [An error occurred!]

End If

Go to Field []

This script will create a new record and find the last line in the buffer, and store it in the field Weight.

13

Function Reference
Serial-Close

Syntax Set Field[result, External("Serial-Close" , "portname")]

Closes a serial port with the specified name.

Parameters
portname the name of the port to close

If the portname parameter is "" ALL ports are closed.

Returned result

The returned result is an error code:
0 no error the port was closed
$$-4210 portDoesnotExistErr port is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer
$$-108 memFullErr Ran out of memory

Other errors may be returned.

Example usage

This will close the COM3 port:
Set Field[gErrorCode, External("Serial-Close" , "COM3")]

Example 2

This will close all open ports:
Set Field[gErrorCode, External("Serial-Close" , "")]

14

Serial-Control

Syntax Set Field[result, External("Serial-Control" , "portname | switch")]

Controls the serial port with the specified name . The port needs to be opened first (See also Serial-Open).

Parameters
portname the name of the port to control
switch the action that needs to be done. This can be either:

suspend This will suspend reading the incoming stream of data.
resume This will resume reading the incoming stream of data.

Returned result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors when sending by testing if the first two characters are dollars. Returned error codes can be:

0 no error the data was send
$$-28 notOpenErr The port is not open
$$-50 paramErr There was an error with the parameter

Other errors may be returned.

Special considerations

The buffer will be emptied when the port is suspended. So when you resume only the data received after you resume will
be available. While suspended you can still send data to the serial port.

This function is very useful for devices that send out continuous data, like an electronic weighing scale.

Example usage

Set Field[gResult, External("Serial-Control" , "COM1| suspend")]

This will suspend the incoming stream of data.

Example 2

Set Field[gErrorCode, External(""Serial-Control" , gPortName & "|resume")]

This will resume reception of data from the port in field gPortName.

15

Serial-DataWasReceived

Syntax SetField[result, External("Serial-DataWasReceived", ""]

Returns 1 when data was received on a serial port. Use this function to see if this is an event that needs to be handled.

Parameters
no parameters leave empty for future use.

Returned result

The returned result is an boolean value. Returned is either:
0 no data received
1 data was received in the buffer

When this function returns 1 you can get the data with the function Serial-Receive.

Example usage

If[External("Serial-DataWasReceived", "")]
Perform Script [Sub-scripts, “Process Data Received”]

Else
... do something else

Endif

16

Serial-GetPortNames

Syntax Set Field[result, External("Serial-GetPortNames" , "")]

Returns the names of all serial ports that are available on the computer.

Parameters
no parameters, leave empty for future use.

Returned result

The returned result is a list of serial ports that are available on the computer that is running FileMaker Pro. Each
available port is on a different line. On a Mac a typical result will be:

Printer Port¶
Modem Port¶

On Windows the result will be:
COM1¶
COM2¶
COM3¶
COM4¶

Use this function to let the user of the database choose which port to open. Store the name of the chosen port in a global
field. You can then check the next time the database is opened whether the portname is still present and ask the user if he
wants to change his preference.

If an error occurs an error code is returned. Returned error codes can be:
$$-108 memFullErr Ran out of memory

Other errors may be returned.

Example usage

 Set Field [result, External(Serial-GetPortNames, "")]

This might return "Internal Modem Port".

17

Serial-Open

Syntax Set Field[result, External("Serial-Open" , "portname|switches|filename|scriptname")]

Opens a serial port with this name and the specified parameters.

Parameters
portname: the name of the port to open
switches: (optional) specifies the setting of the port like the speed of the port etc.
filename: (optional) the name of the file which contains the script to trigger when data comes in.
scriptname: (optional) specifies the name of the script to trigger when data comes in.

Returned result

Returned result is an error code:
0 no error
$$-50 paramErr There was an error with the parameter
$$-108 memFullErr Ran out of memory
$$-97 portInUse Could not open port, the port is in use
$$-4210 portDoesnotExistErr Port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer

Other errors may be returned.

Special considerations

If you specify a filename and scriptname any scripts specified with the function "Serial-SetDispatchScript" will be
ignored for this port.

If you specify a filename you also must provide a scriptname.

Example usage

Set Field[gErrorCode, External("Serial-Open", "COM2 | baud=19200 parity=none
 data=8 stop=10 flowControl=DTRDSR flowControl=RTSCTS ")]

will open the COM2 port with a speed of 19200 baud and the specified options.

Example 2

Set Field[gErrorCode,
External("Serial-Open", gPortName1 & "|" &

gSpeed & " " & gStopBits & " " & gDataBits & " " & gParity & " "& gFlowControl & "|" &
Status(CurrentFileName) &"|"&
"Process Data Received for 1st Port"
)

]

This will open the port in field gPortName1with the specified speed and other options. When data comes in the script
"Process Data Received for 1st Port" in the current filename will be triggered.

18

Serial-Receive

Syntax SetField[result, External("Serial-Receive" , "portname")]

Receives data from a serial port with the specified name . The port needs to be opened first (See Serial-Open). If no data is
available an empty string is returned: "".

Parameters
portname: the name of the port to receive data from

Returned result

The returned result is the data received or an error code. An error always starts with 2 dollars, followed by the error code.
You should always check for errors when receiving by testing if the first two characters are dollars.

Returned error codes can be:

$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExistErr Port with this name is not available on this computer
$$-4211 allPortsNullErr No serial ports are available on this computer
$$-207 notEnoughBufferSpace The input buffer is full

Other errors may be returned.

Special considerations

The plug-in will get any data that is received at the time the function is called. This might not be all data coming in. You
might need to wait and append new data coming in at a later time.

Example usage

Set Field[gResult, External("Serial-Receive" , "Modem port")]

This will receive data from the Modem port. It might return "All the world is a sta". If you call it again later new data
may have come in and the result might be "ge and we are merely players." It is best to concatenate the data coming in.

Example 2

Below you find a "Receive Data" script for receiving data into a global text field gTempResultReceived. The script tests
for errors.

We assume that in your FileMaker file the following fields are defined:
 gPortName Global, text, contains the name of the previously opened port
 gTempResultReceived Global, text
 gTotalResult Global, text, can also be a normal text field

19

Serial-Receive

In ScriptMaker add the following script steps:

Set Field [gTempResultReceived, External("Serial-Receive", gPortName)]
If [Left(gTempResultReceived, 2) = "$$"]

Beep
If [gTempResultReceived = "$$-28"]

Show Message [Open the port first]
Else

If [gTempResultReceived = "$$-207"]
Show Message [Buffer overflow error.]

Else
Show Message [An error occurred!]

End If
End If
Halt Script

Else
no error, so concatenate the data somewhere and do your stuff.
Set Field [gTotalResult , gTotalResult & gTempResultReceived]

 add your own steps here ...
End If

19

Serial-RestoreSituation

Syntax SetField[result, External("Serial-RestoreSituation", ""]

Bring the database file that was in front, before the Dispatch Script was called, back to the front.

Parameters
no parameters leave empty for future use.

Returned result

The returned result is an error code:
0 no error

At the moment no other results are returned.

Example usage

Set Field [gErrorCode, External("Serial-RestoreSituation", "")]

21

Serial-Send

Syntax SetField[result, External("Serial-Receive" , "portname|data")]

Sends data to the serial port with the specified name . The port needs to be opened first (See also Serial-Open).

Parameters
portname: the name of the port to send data to
data: the text data that is to be sent to the serial port

Returned result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors when sending by testing if the first two characters are dollars.

Returned error codes can be:
0 no error the data was send
$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExist A port with this name is not available on this computer
$$-4211 allPortsNullErr No serial ports are available on this computer
$$-207 notEnoughSpace The output buffer is full

Other errors may be returned.

Example usage

Set Field[gResult, External("Serial-Send" , "Modem port| So long")]

This will send the string " So long" to the Modem port.

Set Field[gResult, External("Serial-Send" , gPortName & "|" & textToSend)]

This will send the text in the field textToSend to the port in the field gPortName.

Example 2

Below you find a "Send Data" script for sending data from a global text field gTempResultReceived. The script tests for
errors.

We assume that in your FileMaker file the following fields are defined:
 gPortName Global, text, contains the name of the previously opened port
 gTextToSend Global, text, can also be a normal text field
 gErrorCode Global, text

In ScriptMaker add the following script steps:

22

Serial-Send

Set Field [gErrorCode, External("Serial-Send", gPortName & "|" & gTextToSend)]
If [Left(gErrorCode, 2) = "$$"]

Beep
If [gErrorCode = "$$-28"]

Show Message [Open the port first]
Else

If [gErrorCode = "$$-207"]
Show Message [Buffer overflow error.]

Else
Show Message [An error occurred while sending!]

End If
End If
Halt Script

End If

22

Serial-SetDispatchScript

Syntax SetField[result, External("Serial-SetDispatchScript", "filename | scriptID | waitforstring"]

Sets the Dispatch Script to trigger when data is received. If you give an empty parameter "", the Dispatch Script is
removed.

Parameters
filename: the name of the file with the Dispatch Script,
scriptID: this indicates the script to be triggered.
waitforstring: (optional) wait for this string of characters before triggering a script.

scriptID can be either scriptkey=x or scriptname=....

scriptkey=x : the key number in the menu of the Dispatch Script. x must be in the range from
 0-9.
scriptname=name: the name of the script to trigger.

Returned result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error the Dispatch Script was set
$$-50 paramErr There was an error with the parameter

Other errors may be returned.

Special considerations

See also the User Manual under Dispatch Scripting for more details.

Example usage

Set Field[gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) & "| scriptname=Read Script| waitforstring=OK")]

This will set the Dispatch Script to the script “Read Script” of the current file. The script will not be triggered before the
string “OK” is found.

Set Field[gErrorCode, External("Serial-SetDispatchScript", Status(CurrentFileName) & "| scriptkey=1")]

This will set the Dispatch Script to the script with shortcut control-1 (or command-1) of the current file.

Example 2

Set Field[gErrorCode, External("Serial-SetDispatchScript", "")]

This will reset the Dispatch Script. No action is taken when data is received.

24

Serial-ToASCII

Syntax SetField[result, External("Serial-ToASCII", "ASCIInumber1 | ASCIInumber2 | ASCIInumber3 |...."]

Converts (one or more) numbers to their equivalent ASCII characters.

Parameters
ASCIInumber(s) one or more numbers in the range from 0-255

Returned result

The converted ASCII text

Special considerations

You can also use hexadecimal notation for the numbers. Use 0x00...0xFF to indicate hexadecimal notation.
The graphic rendition of characters greater than 127 is undefined in the American Standard Code for Information
Interchange (ASCII Standard) and varies from font to font and from computer to computer and may look different when
printed.

Example usage

Set Field [text, External("Serial-ToASCII", "65|65|80|13")]

This will result in the text "AAP<CR>" where <CR> is a Carriage Return character

Example 2

Set Field [text, External("Serial-ToASCII", "0x31|0x32|0x33|0x0D|0x0A")]

This will result in the text "123<CR><LF>" where <CR> is a Carriage Return character and <LF> is a Line Feed
character

25

Serial-Version

Syntax Set Field [result, External("Serial-Version", "switches")]

Use this function to see which version of the plug-in is loaded.
Note: This function is also used to register the plug-in.

Parameters
switches determine the behaviour of the function

switches can be one of this:
-GetVersionString the version string is returned (default)
-GetVersionNumber Returns the version number of the plug-in
-ShowFlashDialog Shows the Flash Dialog of the plug-in (returns 0)

If you leave the parameter empty the version string is returned.

Returned result

The function returns "" if this plug-in is not loaded. If the plug-in is loaded the result depends on the input parameter. It
is either a:

VersionString:
If you asked for the version string it will return for example "Serial Plug-in 2.1"

VersionNumber:
If you asked for the version number it returns the version number of the plug-in x1000. For example version 2.2 will
return number 2200.

ShowFlashDialogResult:
This will show the flash dialog and then return the error code 0.

Special considerations

IMPORTANT Always use this function to determine if the plug-in is loaded. If the plug-in is not loaded use of external
functions may result in data loss, as FileMaker will return an empty field to any external function that is not loaded.

Example usage

External("Serial-Version", "") will for example return "Serial Plug-in 2.2"

Example 2

External("Serial-Version", "-GetVersionNumber") will return 1100 for version 1.1.
External("Serial-Version", "-GetVersionNumber") will return 1101 for version 1.1b1
External("Serial-Version", "-GetVersionNumber") will return 2130 for version 2.1.3

So for example to use a feature introduced with version 1.3 test if the result is equal or greater than 1300.

26

Appendix A: ASCII Table
Char........Dec.........Hex......... Control....... Description
NUL....... 0............. 0x00........ ^@..............null (end of C string)
SOH....... 1............. 0x01........ ^A...............start of heading
STX........2............. 0x02........ ^B............... start of text
ETX........3............. 0x03........ ^C............... end of text
EOT........4............. 0x04........ ^D...............end of transmission
ENQ....... 5............. 0x05........ ^E............... enquiry
ACK....... 6............. 0x06........ ^F............... acknowledge
BEL........7............. 0x07........ ^G...............bell
BS...........8............. 0x08........ ^H...............backspace
TAB........9............. 0x09........ ^I................ horizontal tab
LF...........10........... 0x0A....... ^J................ line feed
VT.......... 11........... 0x0B....... ^K...............vertical tab
FF........... 12........... 0x0C....... ^L............... form feed
CR.......... 13........... 0x0D....... ^M.............. carriage return
SO.......... 14........... 0x0E........^N...............shift out
SI............15........... 0x0F........^O...............shift in
DLE........16........... 0x10........ ^P............... data line escape
DC1........17........... 0x11........ ^Q...............device control 1 (X-ON)
DC2........18........... 0x12........ ^R............... device control 2
DC3........19........... 0x13........ ^S............... device control 3 (X-OFF)
DC4........20........... 0x14........ ^T............... device control 4
NAK.......21........... 0x15........ ^U...............negative acknowledge
SYN....... 22........... 0x16........ ^V...............synchronous idle
ETB........23........... 0x17........ ^W..............end transmission block
CAN....... 24........... 0x18........ ^X...............cancel
EM..........25........... 0x19........ ^Y...............end of medium
SUB........26........... 0x1A.......substitute
ESC........ 27........... 0x1B....... ^[................ escape
FS........... 28........... 0x1C....... ^\.................file separator
GS.......... 29........... 0x1D....... ^]................ group separator
RS...........30........... 0x1E........^^................record separator
US.......... 31........... 0x1F........^_................unit separator

Char........Dec.........Hex.........Description
sp............32........... 0x20........space
!.............. 33........... 0x21........
"..............34........... 0x22........
#..............35........... 0x23........
$..............36........... 0x24........
%............ 37........... 0x25........
&............ 38........... 0x26........
'...............39........... 0x27........
(.............. 40........... 0x28........
).............. 41........... 0x29........
*..............42........... 0x2A.......
+............. 43........... 0x2B.......
,...............44........... 0x2C.......
-.............. 45........... 0x2D.......
................46........... 0x2E........
/.............. 47........... 0x2F........
0..............48........... 0x30........
1..............49........... 0x31........
2..............50........... 0x32........
3..............51........... 0x33........
4..............52........... 0x34........
5..............53........... 0x35........
6..............54........... 0x36........
7..............55........... 0x37........
8..............56........... 0x38........
9..............57........... 0x39........
:.............. 58........... 0x3A.......
;.............. 59........... 0x3B.......
<............. 60........... 0x3C.......
=............. 61........... 0x3D.......
>............. 62........... 0x3E........
?..............63........... 0x3F........
@............64........... 0x40........

Char........Dec.........Hex.........
A.............65........... 0x41........
B.............66........... 0x42........
C.............67........... 0x43........
D.............68........... 0x44........
E............. 69........... 0x45........
F............. 70........... 0x46........
G.............71........... 0x47........
H.............72........... 0x48........
I.............. 73........... 0x49........
J..............74........... 0x4A.......
K.............75........... 0x4B.......
L............. 76........... 0x4C.......
M............77........... 0x4D.......
N.............78........... 0x4E........
O.............79........... 0x4F........
P............. 80........... 0x50........
Q.............81........... 0x51........
R.............82........... 0x52........
S............. 83........... 0x53........
T............. 84........... 0x54........
U.............85........... 0x55........
V.............86........... 0x56........
W............87........... 0x57........
X.............88........... 0x58........
Y.............89........... 0x59........
Z............. 90........... 0x5A.......
[.............. 91........... 0x5B.......
\.............. 92........... 0x5C.......
].............. 93........... 0x5D.......
^..............94........... 0x5E........
_..............95........... 0x5F........
`.............. 96........... 0x60

Appendix A: ASCII Table (continued)
Char..........Dec...........Hex
a................97............. 0x61..........
b................98............. 0x62..........
c................99............. 0x63..........
d................100........... 0x64..........
e................101........... 0x65..........
f................ 102........... 0x66..........
g................103........... 0x67..........
h................104........... 0x68..........
i................ 105........... 0x69..........
j................ 106........... 0x6A.........
k................107........... 0x6B.........
l................ 108........... 0x6C.........
m.............. 109........... 0x6D.........
n................110........... 0x6E..........
o................111........... 0x6F..........
p................112........... 0x70..........
q................113........... 0x71..........
r................ 114........... 0x72..........
s................115........... 0x73..........
t................ 116........... 0x74..........
u................117........... 0x75..........
v................118........... 0x76..........
w...............119........... 0x77..........
x................120........... 0x78..........
y................121........... 0x79..........
z................122........... 0x7A.........
{................123........... 0x7B.........
|.................124........... 0x7C.........
}................125........... 0x7D.........
~............... 126........... 0x7E..........
Del............127........... 0x7F..........
Ä...............128........... 0x80..........
Å...............129........... 0x81..........
Ç...............130........... 0x82..........
É............... 131........... 0x83..........
—..............132........... 0x84..........
Ö...............133........... 0x85..........
Ü...............134........... 0x86..........
·.................135........... 0x87..........
à................136........... 0x88..........
â................137........... 0x89..........
ä................138........... 0x8A.........
ã................139........... 0x8B.........
å................140........... 0x8C.........
ç................141........... 0x8D.........
é................142........... 0x8E..........
è................143........... 0x8F..........
ê................144........... 0x90..........
ë................145........... 0x91..........
í................ 146........... 0x92..........
ì................ 147........... 0x93..........
î................ 148........... 0x94..........
ï................ 149........... 0x95..........
ñ................150........... 0x96..........
ó................151........... 0x97..........
ò................152........... 0x98..........
ô................153........... 0x99..........
ö................154........... 0x9A.........
õ................155........... 0x9B.........
ú................156........... 0x9C.........
ù................157........... 0x9D.........
û................158........... 0x9E..........
ü................159........... 0x9F..........
†................160........... 0xA0.........

Char..........Dec...........Hex
°................161........... 0xA1.........
¢................162........... 0xA2.........
£................163........... 0xA3.........
§................164........... 0xA4.........
•................ 165........... 0xA5.........
¶................166........... 0xA6.........
ß................167........... 0xA7.........
®.............. 168........... 0xA8.........
©.............. 169........... 0xA9.........
™..............170........... 0xAA........
´................ 171........... 0xAB........
®.............. 172........... 0xAC........
..................173........... 0xAD........
Æ..............174........... 0xAE.........
Ø...............175........... 0xAF.........
..................176........... 0xB0.........
±............... 177........... 0xB1.........
..................178........... 0xB2.........
..................179........... 0xB3.........
•................ 180........... 0xB4.........
µ............... 181........... 0xB5.........
..................182........... 0xB6.........
..................183........... 0xB7.........
..................184........... 0xB8.........
..................185........... 0xB9.........
..................186........... 0xBA........
ª................ 187........... 0xBB.........
º................ 188........... 0xBC.........
..................189........... 0xBD........
æ...............190........... 0xBE.........
ø................191........... 0xBF.........
¿................192........... 0xC0.........
¡................ 193........... 0xC1.........
¬............... 194........... 0xC2.........
..................195........... 0xC3.........
ƒ................196........... 0xC4.........
..................197........... 0xC5.........
..................198........... 0xC6.........
«................199........... 0xC7.........
»................200........... 0xC8.........
…..............201........... 0xC9
..................202........... 0xCA........
À...............203........... 0xCB.........
Ã...............204........... 0xCC.........
Õ...............205........... 0xCD........
Œ..............206........... 0xCE.........
œ...............207........... 0xCF.........
–................208........... 0xD0.........
—..............209........... 0xD1.........
“................210........... 0xD2.........
”................211........... 0xD3.........
‘................ 212........... 0xD4.........
’................ 213........... 0xD5.........
÷............... 214........... 0xD6.........
..................215........... 0xD7.........
ÿ................216........... 0xD8.........
Ÿ...............217........... 0xD9.........
⁄.................218........... 0xDA........

...............219........... 0xDB........
‹................ 220........... 0xDC........
›................ 221........... 0xDD........
fi............... 222........... 0xDE.........
fl............... 223........... 0xDF.........
‡................224........... 0xE0..........

Char..........Dec...........Hex
·.................225........... 0xE1..........
‚................ 226........... 0xE2..........
„................227........... 0xE3..........
‰..............228........... 0xE4..........
Â...............229........... 0xE5..........
..................230........... 0xE6..........
Á...............231........... 0xE7..........
Ë............... 232........... 0xE8..........
È............... 233........... 0xE9..........
Í................ 234........... 0xEA.........
Î................ 235........... 0xEB.........
Ï................ 236........... 0xEC.........
Ì................ 237........... 0xED.........
Ó...............238........... 0xEE.........
Ô...............239........... 0xEF.........
..................240........... 0xF0..........
Ò...............241........... 0xF1..........
Ú...............242........... 0xF2..........
Û...............243........... 0xF3..........
Ù...............244........... 0xF4..........
ı................ 245........... 0xF5..........
ˆ................ 246........... 0xF6..........
˜................ 247........... 0xF7..........
¯................ 248........... 0xF8..........
˘................ 249........... 0xF9..........
˙................ 250........... 0xFA.........
˚................ 251........... 0xFB.........
¸................ 252........... 0xFC.........
˝................ 253........... 0xFD.........
˛................ 254........... 0xFE.........
ˇ................ 255........... 0xFF

	color: [color.blue]
	line: [2]
	style: [border.s]
	FirPagNum: 3
	p1: 1
	p2: 1
	p3: 2
	p4: 2
	p5: 2
	p6: 2
	p7: 3
	p8: 3
	p9: 4
	p10: 4
	1:
	p11: 6
	p12: 8
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	Hidem:
	p13: 8
	p14: 9
	p15: 9
	p16: 12
	p17: 0
	p18: 14
	13:
	14:
	15:
	16:
	18:
	p19: 14
	p21: 16
	p20: 15
	p22: 17
	p28: 25
	p27: 24
	p26: 22
	p25: 21
	p24: 19
	p23: 18
	p29: 26
	p30: 0
	p31: 27
	20:
	19:
	29:
	28:
	27:
	26:
	25:
	24:
	23:
	22:
	21:
	31:
	TOC:
	click: Click on a line to jump to that subject
	www:
	troi:
	com:

	urloserrrs:

