Troi
' JU;Q Serial plug-in

£0}10J16) 7

Troi Serial Plug-in 2.2
USER GUIDE

October 2001

o1

automatisering

Troi Automatisering
Vuurlaan 18

2408 NB Alphen &d Rijn
The Netherlands

Fax: +31-172-470539

Y ou can also visit the Troi web site at: <http://www.troi.com/> for additional information.

Troi Serial Plug-inis copyright 1999-2001 of Troi Automatisering.All rights reserved

Table of Contents

Click on a line to
jump to that subject

INSTAIIING PIUG-INS e r e e e e e e e e eeeeas 1
[T YOU Have ProblemsS. 1
What can this plug-in dO2. ... e 2
Getting started 2

Using external fUNCLIONS.........ooiiiiiiie e 2

Where to add the External FUNCLIONS?......coooiiiiiiiiiiiieeeeeeeee e 2

SIMPIE EXAMPIE. ... 3
SUMMArY OF FUNCHIONS ..o e e 3
Steps for working with the Troi Serial Plug-in.........oooiii s 4
Specifying the POrt SEtHINGS. ... e 4
Specifying the handshaking OpPtioNS.........uuiiiiiiiii e 6
Receiving data via Dispatch Scripting 8

Dispatch Scripting using Script Name.......cccccoveviiiiiiiieeeeeee 8

Dispatch Scripting USING @ K@Yoovviiiiiiiiiiiiii e 9

Script Triggering on a MatCh String..........eeciiiiiiiie e 9
Controlling input from the Serial Portccooi oo, 12
FUNCLION RETEIEINCE .o 14
Serial-Close 14
Serial-Control 15
Serial-DataWasReceived 16
Serial-GetPortNames 17
Serial-Open 18
Serial-Receive 19
Serial-RestoreSituation 21
Serial-Send 22
Serial-SetDispatchScript 24
Serial-ToASCII 25
Serial-Version 26

Appendix A: ASCIl Table

Table of Contents

Installing plug-ins

For MacOS:
s Quit FileMaker Pro.
m Putthefile“Troi Serial Plug-in” and thefile “Troi Serial X extension” from the

folder “MacOS Plug-in” into the “FileMaker Extensions’ folder in the FileMaker Pro -@
folder.

s If you haveinstalled previous versions of this plug-in, you are asked: “An older item
named “Troi Serial Plug-in” aready existsin thislocation. Do you want to replace it \L

with the one you' re moving? . Press the OK button.
m Start FileMaker Pro. Thefirst timethe Troi Serial Plug-inisused it will display a
dialog box, indicating that it is loading and showing the registration status. _ _
Filetaker Extenszior
For Windows:
s Quit FileMaker Pro.
m Putthefile"trserial.fmx" from the directory "Windows Plug-in" into the "SY STEM" subdirectory in

the FI I eM aker Pro dl ra:tory & C:\Progiam Files\Claris Corp\FileMaker Pro
s If you haveinstalled previous versions of this plug-in, you are asked: “This -

folder already contains afile called 'trserial .fmx'. Would you like to replace the iy

exigting file with this one? . Pressthe Y es button.] é B

m Start FileMaker Pro. The Troi Serial Plug-in will display adialog box,
indicating that it is loading and showing the registration status.

Examples System Template

TIP You can check which plug-ins you have loaded by going to the plug-in preferences. Choose Pr efer ences
from the Edit menu, and then choose Plug-ins.

Y ou can now open the file "All Serial Examples.fp5" to see how to use the plug-in's functions. Thereisalso a
Function overview available.

If You Have Problems

This user guide triesto give you all the information necessary to use this plug-in. So if you have a problem
please read this user guide first. If that doesn't help you can get free support by email. Send your questions to
support@troi.com with afull explanation of the problem. Also give as much relevant information (version of
the plug-in, which platform, version of the operating system, version of FileMaker Pro) as possible.

If you find any mistake in this manual or have a suggestion please let us know. We appreciate your feedback!
TIP Y ou can get more information on returned error codes from our OSErrrs database on our web site:

<http://www.troi.com/software/oserrrs.ntml>. This free FileMaker database lists all error codes for Windows
and Mac OS!

Table of Contents

What can this plug-in do?

The Troi Seria Plug-in adds serial functionsto to FileMaker Pro. With this plug-in you can read and write to
any serial port that is available on your computer.

NOTE USB ports are not supported. USB is abus protocol that can be used from various purposes and
devices, like keyboards, harddisks, CD-ROM drives, adaptors, cameras. All these devices need specific drivers.
We have currently no plans to create a USB plug-in. Note however that the Troi Serial Plug-in is reported to be
working with the USB to Seria adapters.

Getting started

Using external functions

The Troi Serial Plug-in adds new functions to the standard functions that are available in FileMaker Pro. The
functions added by a plug-in are called external functions. Y ou can see those extra functions for all
plug-ins at the top right of the Specify Calculation Box:

Y ou use special syntax with external functions: External ("function name" ,parameter) where function nameis
the name of an external function. The parameter isrequired, even if it'sonly "". Plug-ins don't work directly
after installation. To access a plug-in function, you need to add the calls to the function in a calculation for
example in atext calculation in Define Fields or in a ScriptMaker Script.

Specify Calculation
Current File [Text Function Ov..» Opetratars View | External functions ¥ l%eg‘:et 5?&%”3“;2%“5
text - = - Troi Text Plug-In Plug-in Names
text rot13 =] * =] External ["TrText-Version”; pd|
gMurnber — @ ¥ — External ["TrText-SumTextRed)
gContainer < External ["TrText-SumnTextSh Eﬁéﬂﬂar!;gncnons
crypt test field z External ["TrText-SumTextCall |
giersion @B 4 External ("TrText-aNDText”; | =
qCryptkey - and || External ("TrText-x0RText"; g
keyHint - @B ar - web Companion -
g¥ersion =
An External " c wonm
function Externall"TrText-Yersion”; "")

IMPORTANT In the United States, commas act as list separators in functions. In other countries semicolons
might be used as list separators. The separator being used depends on the operating system your computer uses,
aswell asthe separator used when the file was created. All examples show the functions with commas. For
example: External ("Seri al -Version", "") will becomeExt ernal (" Seri al - Versi on";
"") insuch afile.

Where to add the External Functions?

External functions for this plug-in are intended to be used in a script step using a calculation. For most
functions of this plug-in it makes no sense to add them to a define field calculation, as the functions will have
side effects.

Table of Contents

Simple example

We start with a simple example to get you started. Create a new database, with a global text field called
gPortNames. Create a new ScriptMaker Script called "Get Seria Port Names'. Delete all steps and then add the
following script step:

Set Field [gPortNanes, External ("Serial -GetPortNanes", "")]

Performing this script will return all the seria ports that can be found on this computer, separated by returns.

On Windows the result will be something like this:
coM1y
ComM2v
COM3|
COM4Y

NOTE Function names, like Ser i al - Get Por t Nares are case sensitive. Be sure to spell them right, or get
them from the External Functionslist at the top right of the " Specify Calculation" dialog.

Please take aclose look at the included example files, as they provide a great starting point. From there you can
move on, using the functions of the plug-in as building blocks. Together they give you great new tools!

Summary of functions

The Troi Serial Plug-in adds the following functions:

function name
Serial-Version
Serial-GetPortNames
Serial-Open
Serial-Close
Serial-Receive
Seria-Send
Serial-SetDispatchScript
Serial-DataWasReceived
Serial-RestoreSituation
Serial-ToASCI|
Seria-Control

short description

check for correct version of the plug-in

returns the names of all serial ports that are available on the computer
opens a serial port

closes aseria port

receives data from a serial port

send datato a seria port

tell the plug-in which script to call when datais received

returnsif data was received on a open port

tell the plug-in to bring the original file back to the front

converts (one or more) numbersto their equivalent ASCII characters
suspends and resumes input from a serial port

Table of Contents

Steps for working with the Troi Serial Plug-in

Below you find an overview of the main steps needed to communicate with a serial port:

1 - Find available ports

Use the function “ Serial-GetPortNames” to get the names of all serial ports that are available on the computer
and let the end user choose a port.

2 - Open the selected port

Use the function “ Serial-Open” to open a port. Optionally use the function “ Serial -SetDispatchScript” to
specify which script is triggered when data comes in from the Serial port.

3 - Communicate with the serial port

Use the functions “ Serial-Send” and “ Serial-Receive” to send and receive datato and from a serial port

Y ou can use other functions, like “ Serial-DataWasReceived” and “ Serial-RestoreSituation” to help you get the
datainto a FileMaker database.

4 - Close the serial port

At the end of the communication you need to close the serial port.

Specifying the port settings

Default port settings

A seria port can be configured in alot of ways. These settings can be set by specifying switches. If you don't
specify any switches the port isinitialised to the following settings. a speed of 9600 baud, no parity, 8 data bits,
1 stop bit, no handshaking. If you want to use this setting open the port like this:

Set Fi el d[gError Code, External ("Serial -Open”, "COM")]

Specifying other port settings

It is recommended that you set the port settings explicitly. Give the settings by concatenating the desired
settings keywords. Y ou specify them like this:

Set Fi el d[gError Code, External ("Seri al - Open",
"COM2| baud=9600 parity=none data=8 stop=10 fl owControl =XOnXOF f")]

Y ou can set the speed, the parity, the number of data and stopbits, and the handshaking to use. Note that the
order of the keywords and case are ignored. All keywords are optional and should be separated by a space or a
return.

Table of Contents

Specifying the port speed

The port speed indicates how quick athe data is transported over the seria line.
Allowed values for the port speed are:

baud=150 baud=1800 baud=7200 baud=28800 baud=115200
baud=300 baud=2400 baud=9600 baud=38400 baud=230400
baud=600 baud=3600 baud=14400 baud=57600

baud=1200 baud=4800 baud=19200

NOTE Not all speeds may be supported on all seria ports. Check the documentation of the computer and the
equipment you want to connect.

Y ou heed to specify the same speed that the other equipment is using. Higher port speeds can result in loss of
dataif the serial cable can't cope with this speed. If this happenstry alower speed.

Specifying the bit format options

Data over a seria port is sent in small packet of 4 to 10 bits. This packet consists of 4-8 data bits, followed by a
parity bit and stopbits.

Data bits
Y ou can specify the number of the data bits by adding one of the datasize keywords to the switch parameter.
The most used value is 8 data bits. Allowed values for the number of data bits are:
dat a=4 dat a=5 dat a=6 dat a=7 dat a=8
Parity bits
Y ou can specify the parity bit by giving adding one of the following keywords to the switch parameter:
parity=none parity=odd parity=even
Stop bits
Y ou can specify the number of stopbits by giving adding one of the following keywords to the switch
parameter:
stop=10 stop=15 stop=20

Here st op=10 means 1 stop bit, st op=15 means 1.5 stopbit and st op=20 means 2 stopbits.

Table of Contents

Specifying the handshaking options
Handshaking is away to ensure that the transfer of data can be stopped temporarily. This also called (data) flow
control. A serial port can use hardware handshaking and software handshaking. For hardware handshaking to
work the serial cable must have wires to support it.
Using the Serial-Open function this plug-in allows a basic way to set the handshaking and also an advanced
way, which gives more options, but most users probably don't need.
Basic handshaking options
Basic handshaking has 3 keywords:

f I owCont r ol =DTRDSR f I owCont r ol =RTSCTS f I owCont r ol =XOnXOF f
Y ou can specify one or more of these flow control keywords. Y ou should specify at |east one of these
keywords. Try f 1 owCont r ol =DTRDSR as thisis mostly supported. FI owCont r ol =DTRDSR and f | owCont r ol =RTSC
are hardware handshaking options, for which you need proper cabling. FI owCont r ol =XOnXCF f is a software
based handshake option.
FI owCont r ol =DTRDSR means that the signal DTR is used for input flow control and DSR for output flow control.
FI owCont r ol =RTSCTS meansthat the signal RTS is used for input flow control and CTS for output flow control.
FI owCont r ol =XOnXOF f uses a XOff character (control-S) and a XOn character (control-Q) to stop input and
output flow.
IMPORTANT Do hot use Fl owCont r ol =XOnX0f £ if you want to transfer binary data, like pictures. This protocol
uses two ASCI| characters that might also be in the binary data. FI owCont r ol =XOnX0f f works fine with normal
text.
Example 1

Set Fi el d[gError Code, External ("Serial -Cpen",
"COM2| baud=9600 parity=none data=8 stop=10 fl owContr ol =DTRDSR")]

Thiswill set the port to use DTR/ DSR hardware handshaking.
Example 2
Set Fiel d[gError Code, External ("Seri al - Open",
"COM2| baud=9600 parity=none data=8 stop=10 fl owControl =DTRDSR
f 1 owCont r ol =RTSCTS f | owCont r ol =XOnXOF)]

Thiswill set the port to use all 3 types of handshaking in parallel.

Table of Contents

Advanced handshaking options

Advanced handshaking options allows you more control over the seria port settings. It enables you to set the
handshaking of the output an input separately.

With advanced handshaking you can use the following keywords:

keyword meaning

inputControl=XOnX Off use XOnXOff for input handshaking
outputControl=X OnX Off use XOnXOff for output handshaking
inputControl=RTS use RTS for input handshaking
outputControl=CTS use CTS for output handshaking
inputControl=DTR use DTR for input handshaking
outputControl=DSR use DSRfor output handshaking
DTR=enabled set DTR signa permanent to high
DTR=disabled set DTR signal permanent to low
RTS=enabled set RTS signal permanent to high
RTS=disabled set RTS signal permanent to low

Below you find how the basic handshaking keywords relate to the advanced handshaking keywords:

the same as 2 advanced keywords
flowControl=XOnX Off inputControl=XOnXOff outputControl=XOnXOff
flowControl=RTSCTS inputControl=RTS outputControl=CTS
flowControl=DTRDSR = inputControl=DTR outputControl=DSR

basic keyword

The other advanced keywords don't have a equivalent.

NOTE Y ou can mix the basic handshaking keywords with the advanced handshaking keywords, as long as this
issensible.

Example 1

If you want to use DTR handshaking for input flow control and CTS for output flow control use the following
settings to open COM 1:

Set Fi el d[gError Code, External ("Seri al - Open",
"COML| baud=9600 parity=none data=8 stop=10
out put Cont r ol =CTS i nput Cont r ol =DTR")]

Example 2

If you want to enable the DTR signal and use XOnX Off input flow control use the following settings to open
COM1:

Set Fi el d[gError Code, External ("Seri al - Open",
"COML| baud=9600 parity=none data=8 stop=10
DTR=enabl ed i nput Control =XOnXOF f")]

Table of Contents

Example 3

Set Fi el d[gError Code, External ("Seri al - Open",
"COM2 | baud=9600 data=7 parity=odd stop=20
f 1 owCont r ol =XOnXOf f out put Cont r ol =CTS i nput Control =DTR")]

This shows that XOnX Off is used for input and output flow control and also DTR handshaking for input flow
control and CTS for output flow control.

Receiving data via Dispatch Scripting™

FileMaker 5.0 added support for ActiveX on Windows. Together with Apple Event support onthe Macitis
now possible on all platforms to trigger scripts by name. The 2.0 version of the Serial Plug-in implemented
these automation features, by extending the Dispatch Scripting mechanism. It is now possibleto tell the plug-in
the name of the script to be triggered. It is no longer needed that this script is visible in the Scripts Menu.

NOTE Starting with version 2.2 it is now also possible to trigger scripts via names when running FileMaker 4
on the Windows platform, or runtimes created with FileM aker Developer 5 and FileMaker Developer 5.5 on
Windows.

For compatibility the origina Dispatch Scripting viaakey (see below) is still available.

Functions to implement Dispatch Scripting

The following external functions help in achieving the receiving of data viathe Dispatch Script.

........ Serial-SetDispatchScript tell the plug-in which (Dispatch) script to call when datais received
........ Serial-DataWasReceived returns 1 when data was received on a open port
........ Serial-RestoreSituation tell the plug-in to bring the original file back to the front

-> See the sample file Dispatch.fp5 for aworking example.

Dispatch Scripting using Script Name

This method of triggering a script when there is data received is the preferred way. Usually you set the dispatch
script once after you have opened the serial port.

Table of Contents

Example "Set Dispatch Script with name"

Below you find asample Set Di spatch Script:

Set Field [gErrorCode, External ("Seri al - Set Di spatchScript",
Status(CurrentFil eNane) & "| scriptname=Process Data Received")]
If [Left(gErrorCode, 2) = "$$"]
Beep
Show Message [An error occurred while setting the dispatch script]
Halt Scri pt
End If

Thistellsthe plug-in to trigger the script Process Dat a Recei ved whenever incoming data from (one of) the
serial port(s) isavailable. Inthe script Process Data Recei ved you can retrieve the incoming data, and storeit,
and do any other processing.

Dispatch Scripting using a Key

This plug-in also has a different way to execute a script when data has been received. Thisis doneviaa
Dispatch Script with akey. If you want this functionality you need to implement the Dispatch functionsin your
database. Thisis how this can be done:

During development

Y ou have to implement this once:
- write the Dispatch Script or change an existing script
- include the Dispatch Script in the menu, so it can be called from the keyboard with control-1 to
control 9 (Windows) or command-1 to command-9 (Mac)
- write a" Start receiving script" that
* opens the serial port
» and tells the plug-in which is the Dispatch Script.

When Running the database

When the database is running and you want to begin receiving:
- perform the " Start receiving script".

Thistdlsthe plug-in for example that the Dispatch Script can be called from the keyboard with control-1
(Windows) or command-1 (Mac).

Thisiswhat happens when data arrives:
- the plug-in will bring the database file to the front and simulate a press on the keyboard:control-1
(Windows) or command-1(Mac).
- thiswill start the Dispatch Script, which can handle the receiving of the data.

NOTE You can still use the Dispatch Script for other actions, so this doesn't cost a place in the menu. That's
why we call it adispatching script: when called it determinesif it was called because there was data received
and if yesit will dispatch the processing.

Table of Contents

Example Dispatch Script
Below you findasample” To Menu" Dispatch Script:

I'f [External ("Serial - Dat aWasRecei ved", "")]

Perform Script [Sub-scripts, "Process Data Received"]
El se

Enter Browse Mbde []

Go to Layout [“Menu”]

Hal t Scri pt
End If

This script checksiif there is datareceived. If thisisthe case it dispatches to the script " Process Dat a
Recei ved" which receivesthe dataand putsit into afield. Elseit will do its normal business (going to a menu).

Make sure you include this script in the menu. We assume this script can be performed with the keyboard
shortcut :control-1 (Windows) or command-1 (Mac)
Example Process Data Received Script

Below you find asample"” Process Data Recei ved" script, which gets the data from the plug-in into the
field mesRecei ved.

Enter Browse Mbde []

Perform Scri pt [Sub-scripts, "Receive Data in gl obal gTenpResultReceived"]
Set Field [nmesRecei ved, nmesReceived & gTenpResul t Recei ved]

Set Field [gErrorCode, External ("Serial -RestoreSituation", "")]

Example "Set Dispatch Script" Script
Below you find asample” Set Di spat ch Scri pt" Script:
Set Field [gErrorCode, Ext ernal (" Seri al - Set Di spat chScript",
Status(CurrentFil eNane) & "| scriptkey=1")]
If [Left(gErrorCode, 2) = "3"]
Beep
Show Message [An error occurred while setting the dispatch script]
Halt Scri pt
End |f
Example Start Receiving Script
Below you findasample"” St art Recei vi ng" script:

Perform Script [Sub-scripts, "Open Serial Port"]
Perform Scri pt [Sub-scripts, "Set Dispatch Script"]

When you want to begin receiving perform the "Start receiving script”.

10

Table of Contents

Script Triggering on a Match String

The Serial plug-in can look for a special match string that has to arrive at the input buffer before theit triggers a
script. When you specify the dispatch script, you can add the wai t f or mat ch parameter.

The script step below will set adispatch script Process Data Recei ved , which isonly triggered after the
string OK isreceived in the input buffer.

Set Field [gErrorCode, External ("Serial-SetDi spatchScript" ,
Status(Current Fil eNane) &
"| scriptnane=Process Data Received" &
"| waitfornmatch=0K")]

The script step below will set adispatch script Process Data Recei ved , which isonly triggered after aCR
(carriage return) character, followed by a LF (linefeed) character isreceived. These are the ASCII characters
0x0D and OxO0A respectively. (Seethe ASCII Tablein Appendix A)

Using the TOASCI | function we set the matchstring like this:
Set Field [gErrorCode, External ("Serial -SetDi spatchScript",
Status(Current Fil eNane) &

"| scriptnane=" & "Process Data Received" &
"| waitfornmatch=" & External ("Serial-ToASC|", "OxODl Ox0A")]

Y ou can specify any string up to 25 characters.

11

Table of Contents

Controlling input from the Serial Port

The function “ Serial-Control” controls the serial port . With this function you can suspend or resume the
incoming data. This command is very useful for devices that send out continuous data, like an electronic
weighing scale.

NOTE The buffer will be emptied when the port is suspended. So when you give the resume command only
the data received after this command will be received.

NOTE Y ou can continue to send data to the serial port.
Example 1

Set Field[gResult, External ("Serial-Control" , "Mdem port|suspend")]
Thiswill suspend the incoming stream of data from the Modem port.

Set Field[gResult, External ("Serial-Control" , "Mdem port|resune”)]

Thiswill resume the previously resumed incoming stream of data from the Modem port.

Example 2

Say you have an electronic weighing scale that sends data to the serial port continuously. The dataisin this
form:

1200 kg net CR LF

1199 kg net CR LF

1200 kg net CR LF

1200 kg net CR LF

etc...

You are only interested in this data when you are actually weighing something. So the best way to handle thisis
to open the serial port and then suspend this port. When you want to measure something you send a resume
command, and gather afull line of data, the suspend the port again.

Y ou need to define these fields:
gPortName global text field, to hold the portname

gErrorCode global text field, to hold the error codein
weight number field, to store the weight

When starting up the database you issue these commando in a startup script:
Set Field[gPortNane,"COM" |
Set Field[gErrorCode, External ("Serial-Qpen" , gPortName & "|baud=19200")]
If[gErrorCode = 0]

Set Field[gErrorCode, External ("Serial-Control" , gPortNanme & "|suspend")]
Endi f

Thiswill open the port and then wait till further notice.

12

Table of Contents

When the user of the database presses a button you start this M easur e Now script:

Set Field [gTenpResul t Recei ved, ""]
Set Field [gTenpBuffer, ""]
Set Field [gNunber, 10]

Comrent [Resune the incomi ng data...]
Set Field [gErrorCode, External ("Serial-Control", gPortNanme & "| resune")]
If [gErrorCode = 0]
Loop
Perform Script [Sub-scripts, Receive Data in global gTenpResultReceived]
Set Field [gTempBuffer, gTenpBuffer & gTenpResultReceived]
Exit Loop If [PatternCount(gTenpBuffer , "q") >= 2 or gErrorCode <> 0]
Pause/ Resune Script [0:00:01]
Set Field [gNunmber, gNumber - 1]
I f [gNunber = 0]
Set Field [gErrorCode, -1]
End If
End Loop
Set Field [gNunmber, External ("Serial-Control"”, gPortName & "| suspend")”]
End If
Perform Script [Sub-scripts, Store Measure Results]

The M easure Now script resets the buffers, then resumes the incoming data. Inside the loop the datais
received until there are 2 returnsin the buffer, which means a complete line was received. The script then
suspends the port again and then the script Store M easure Resultsis called to store the results in a record.

To prevent this looping forever when no datais received we also use a counter, gNunber . It startsat 10 and is
lowered every time through the loop. After 10x the script gives up and an error code of -1 is set, to get out of
the loop.

Hereisthe Store Measur e Results script:

)]

If [gErrorCode = 0 and PatternCount(gTenpBuffer , "q") >= 2]
New Recor d/ Request
Conmment [Cut off at the end of the line]
Set Field [gTenpBuffer, Left(gTenpBuffer,
Position(gTempBuffer, "1", Length(gTempBuffer) , -1) - 1)]
Conment [Copy one line fromthe end...]
Set Field [Wight, Mddle(gTenpBuffer,
Position(gTenpBuffer, "9", Length(gTenpBuffer) , -1) + 1, Length(gTenpBuf

El se

Beep

Show Message [An error occurred!]
End If

Go to Field []

This script will create a new record and find the last line in the buffer, and store it in the field vei ght .

13

Function Reference
Serial-Close

Syntax Set Field[result, External (" Serial-Close" , "portname™) |

Closes aseria port with the specified name.

Parameters
portname the name of the port to close

If the portname parameter is"" ALL ports are closed.

Returned result

The returned result is an error code:

0 no error the port was closed

$$-4210 portDoesnotExistErr port is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer
$$-108 memFullErr Ran out of memory

Other errors may be returned.

Example usage
Thiswill close the COM3 port:

Set Field[gErrorCode, External("Serial-Close” , "COM3")]
Example 2

Thiswill close all open ports:
Set Field[gErrorCode, External (" Serial-Close" , ")]

Table of Contents

14

Table of Contents

Serial-Control

Syntax Set Field[result, External (" Serial-Control” , "portname | switch")]

Controlsthe seria port with the specified name . The port needs to be opened first (See also Serial-Open).

Parameters
portname the name of the port to control
switch the action that needs to be done. This can be either:

suspend Thiswill suspend reading the incoming stream of data.
resume Thiswill resume reading the incoming stream of data.

Returned result

The returned result isan error code. An error always starts with 2 dollars, followed by the error code. Y ou should aways
check for errors when sending by testing if the first two characters are dollars. Returned error codes can be;

0 no error the data was send

$$-28 notOpenErr The port is not open

$$-50 paramErr There was an error with the parameter
Other errors may be returned.

Special considerations

The buffer will be emptied when the port is suspended. So when you resume only the data received after you resume will
be available. While suspended you can still send data to the serial port.

Thisfunction is very useful for devices that send out continuous data, like an electronic weighing scale.

Example usage
Set Field[gResult, External (" Serial-Control" , "COM 1| suspend”)]

Thiswill suspend the incoming stream of data.

Example 2
Set Field[gErrorCode, External (""" Serial-Control" , gPortName & "|resume") |

Thiswill resume reception of datafrom the port in field gPortName.

15

Table of Contents

Serial-DataWasReceived

Syntax SetField[result, External (" Seria-DataWasReceived”, "]

Returns 1 when data was received on a serial port. Use this function to seeif thisis an event that needs to be handled.

Parameters
no parameters leave empty for future use.

Returned result

The returned result is an boolean value. Returned is either:
0 no datareceived
1 datawas received in the buffer

When this function returns 1 you can get the data with the function Serial-Receive.

Example usage

If[External (" Serial-DataWasReceived”, ")]

Perform Script [Sub-scripts, “ Process Data Received’]
Else

... do something else
Endif

16

Table of Contents

Serial-GetPortNames

Syntax Set Field[result, External (" Serial-GetPortNames" , "")]

Returns the names of all serial portsthat are available on the computer.

Parameters
no parameters, leave empty for future use.

Returned result

The returned result is alist of serial ports that are available on the computer that is running FileMaker Pro. Each
available port is on adifferent line. On aMac atypical result will be:

Printer Portf

Modem Portf

On Windows the result will be:
COoM1Y
COM2q
COoM3"
comM4q

Use this function to let the user of the database choose which port to open. Store the name of the chosen port in a global
field. Y ou can then check the next time the database is opened whether the portname is still present and ask the user if he
wants to change his preference.

If an error occurs an error code is returned. Returned error codes can be:

$$-108 memFullErr Ran out of memory
Other errors may be returned.

Example usage

Set Field [result, External (Serial-GetPortNames, "")]

This might return "Internal Modem Port".

17

Table of Contents

Serial-Open

Syntax Set Field[result, External (" Serial-Open" , " portname|switches|filenamelscriptname")]

Opens aseria port with this name and the specified parameters.

Parameters
portname: the name of the port to open
switches: (optional) specifies the setting of the port like the speed of the port etc.
filename: (optional) the name of the file which contains the script to trigger when data comesiin.

scriptname: (optional) specifies the name of the script to trigger when data comesin.

Returned result

Returned result is an error code:

0 no error

$$-50 paramErr There was an error with the parameter

$$-108 memFullErr Ran out of memory

$$-97 portinUse Could not open port, the port isin use

$$-4210 portDoesnotExistErr Port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer

Other errors may be returned.

Special considerations

If you specify afilename and scriptname any scripts specified with the function " Serial-SetDispatchScript" will be
ignored for this port.

If you specify afilename you also must provide a scriptname.

Example usage

Set Field[gErrorCode, External (" Serial-Open", "COM?2 | baud=19200 parity=none
data=8 stop=10 flowControl=DTRDSR flowControl=RTSCTS")]

will open the COM2 port with a speed of 19200 baud and the specified options.

Example 2

Set Field[gErrorCode,
External ("Serial-Open", gPortNamel & "|" &
gSpeed & " " & gStopBits & " " & gDataBits& " " & gParity & " "& gFlowControl & "|" &
Status(CurrentFileName) &"['&
"Process Data Received for 1st Port"
)
]

Thiswill open the port in field gPortNamelwith the specified speed and other options. When data comes in the script
"Process Data Received for 1st Port" in the current filename will be triggered.

18

Table of Contents

Serial-Receive

Syntax SetField[result, External (" Serial-Receive" , "portname") |

Receives data from a serial port with the specified name . The port needs to be opened first (See Serial-Open). If no datais

available an empty string is returned: "".

Parameters
portname: the name of the port to receive data from
Returned result

The returned result is the data received or an error code. An error always starts with 2 dollars, followed by the error code.
Y ou should always check for errors when receiving by testing if the first two characters are dollars.

Returned error codes can be:

$$-28 notOpenErr The port is not open

$$-108 memPFul l[Err Ran out of memory

$$-50 paramErr There was an error with the parameter

$$-4210 portDoesnotExistErr Port with this name is not available on this computer
$$-4211 allPortsNullErr No serial ports are available on this computer

$$-207 notEnoughBufferSpace The input buffer isfull

Other errors may be returned.

Special considerations

The plug-in will get any datathat isreceived at the time the function is called. This might not be al data coming in. Y ou
might need to wait and append new data coming in at alater time.

Example usage

Set Field] gResult, External (" Serial-Receive" , "Modem port") |

Thiswill receive data from the Modem port. It might return "All the world isasta’. If you call it again later new data
may have come in and the result might be "ge and we are merely players." It is best to concatenate the data coming in.
Example 2

Below you find a"Receive Data" script for receiving datainto a global text field gTempResultReceived. The script tests
for errors.

We assume that in your FileMaker file the following fields are defined:

gPortName Global, text, contains the name of the previously opened port
gTempResultReceived Globad, text
gTotalResult Global, text, can aso be anormal text field

19

Serial-Receive

In ScriptMaker add the following script steps:

Set Field [gTempResultReceived, External (" Serial-Receive’, gPortName) |
If [Left(gTempResultReceived, 2) = "$$"]

Else

End If

Beep
If [gTempResultReceived = "$$-28"]
Show Message [Open the port first]
Else
If [gTempResultReceived = "$$-207"]
Show Message [Buffer overflow error.]
Else
Show Message [An error occurred!]
End If
End If
Halt Script

no error, so concatenate the data somewhere and do your stuff.
Set Field [gTotalResult , gTotalResult & gTempResultReceived |
.... add your own steps here ...

Table of Contents

19

Table of Contents

Serial-RestoreSituation

Syntax SetField[result, External (" Serial-RestoreSituation”, ""']
Bring the database file that was in front, before the Dispatch Script was called, back to the front.

Parameters
no parameters leave empty for future use.

Returned result
The returned result is an error code:

0 no error
At the moment no other results are returned.

Example usage

Set Field [gErrorCode, External (" Serial-RestoreSituation”, ")]

21

Table of Contents

Serial-Send

Syntax SetFied[result, External (" Serial-Receive" , "portnameldata’) |

Sends data to the serial port with the specified name . The port needs to be opened first (See also Serial-Open).

Parameters
portname: the name of the port to send data to
data: the text data that is to be sent to the serial port

Returned result

The returned result isan error code. An error always starts with 2 dollars, followed by the error code. Y ou should aways
check for errors when sending by testing if the first two characters are dollars.

Returned error codes can be:

0 no error the data was send

$$-28 notOpenErr The port is not open

$$-108 memFullErr Ran out of memory

$$-50 paramErr There was an error with the parameter

$$-4210 portDoesnotExist A port with this name is not available on this computer
$$-4211 allPortsNullErr No serial ports are available on this computer

$$-207 notEnoughSpace The output buffer isfull

Other errors may be returned.

Example usage

Set Field[gResult, External (" Serial-Send" , "Modem port| So long")]
Thiswill send the string " So long" to the Modem port.

Set Field[gResult, External (" Serial-Send" , gPortName & "[* & textToSend) |

Thiswill send thetext in thefield textToSend to the port in the field gPortName.

Example 2

Below you find a"Send Data" script for sending data from a global text field gTempResultReceived. The script tests for
errors.

We assumethat in your FileMaker file the following fields are defined:

gPortName Global, text, contains the name of the previously opened port
gTextToSend Glaobal, text, can also be anormal text field
gErrorCode Global, text

In ScriptMaker add the following script steps:

22

Table of Contents

Serial-Send

Set Field [gErrorCode, External (" Serial-Send”, gPortName & "|* & gTextToSend) |
If [Left(gErrorCode, 2) = "$$"]
Beep
If [gErrorCode = "$$-28"]
Show Message [Open the port first]
Else
If [gErrorCode = "$$-207"]
Show Message [Buffer overflow error.]
Else
Show Message [An error occurred while sending!]
End If
End If
Halt Script
End If

22

Serial-SetDispatchScript

Syntax SetField[result, External (" Serial-SetDispatchScript”, "filename | scriptI D | waitforstring”]

Sets the Dispatch Script to trigger when datais received. If you give an empty parameter ", the Dispatch Script is
removed.

Parameters
filename: the name of the file with the Dispatch Script,
scriptlD: this indicates the script to be triggered.

waitforstring: (optional) wait for this string of characters before triggering a script.
scriptlD can be either scriptkey=x or scriptname=....
scriptkey=x : the key number in the menu of the Dispatch Script. x must be in the range from

0-9.
scriptname=name: the name of the script to trigger.

Returned result

The returned result isan error code. An error always starts with 2 dollars, followed by the error code. Y ou should aways
check for errors. Returned error codes can be:

0 no error the Dispatch Script was set
$$-50 paramErr There was an error with the parameter
Other errors may be returned.

Special considerations

See also the User Manual under Dispatch Scripting for more details.

Example usage

Set Field[gErrorCode, External (" Serial-SetDispatchScript”,
Status(CurrentFileName) & | scriptname=Read Script| waitforstring=0OK")]

Thiswill set the Dispatch Script to the script “Read Script” of the current file. The script will not be triggered before the
string “OK” isfound.

Set Field[gErrorCode, External (" Serial-SetDispatchScript”, Status(CurrentFileName) & "| scriptkey=1")]

Thiswill set the Dispatch Script to the script with shortcut control-1 (or command-1) of the current file.

Example 2
Set Field[gErrorCode, External (" Serial-SetDispatchScript”, ") |

Thiswill reset the Dispatch Script. No action is taken when datais received.

24

Serial-ToASCII

Syntax SetField[result, External ("Serial-ToASCII", "ASClInumberl | ASClInumber2 | ASClinumber3 |...."]

Converts (one or more) humbersto their equivalent ASCII characters.

Parameters
ASClInumber (s) one or more numbersin the range from 0-255
Returned result

The converted ASCI| text

Special considerations

Y ou can also use hexadecimal notation for the numbers. Use 0x00...0xFF to indicate hexadecimal notation.

The graphic rendition of characters greater than 127 is undefined in the American Standard Code for Information
Interchange (ASCII Standard) and varies from font to font and from computer to computer and may look different when
printed.

Example usage

Set Field [text, External ("Serial-TOASCII", "65[65/80[13")]

Thiswill result in the text "AAP<CR>" where <CR> is a Carriage Return character

Example 2
Set Field [text, External ("Serial-TOASCII", "0x31|0x32|0x33|0x0D|0x0A")]

Thiswill result in the text "123<CR><L F>" where <CR> is a Carriage Return character and <LF> isaLine Feed
character

25

Table of Contents

Serial-Version

Syntax Set Field [result, External ("Serial-Version", "switches") |

Use this function to see which version of the plug-in is loaded.
Note: Thisfunction is also used to register the plug-in.

Parameters
switches deter mine the behaviour of the function

switches can be one of this:

-GetVersionString the version string is returned (default)
-GetVersionNumber Returns the version number of the plug-in
-ShowFlashDialog Shows the Flash Dialog of the plug-in (returns 0)

If you leave the parameter empty the version string is returned.

Returned result

The function returns
iseither a

if this plug-in is not loaded. If the plug-in is loaded the result depends on the input parameter. It
VersionString:

If you asked for the version string it will return for example "Seria Plug-in 2.1"

VersionNumber:

If you asked for the version number it returns the version number of the plug-in x1000. For example version 2.2 will
return number 2200.

ShowFlashDialogResult:

Thiswill show the flash dialog and then return the error code O.

Special considerations

IMPORTANT Always use this function to determine if the plug-in is loaded. If the plug-in is not loaded use of external
functions may result in dataloss, as FileMaker will return an empty field to any external function that is not loaded.

Example usage

External ("Serial-Version", ") will for example return "Serial Plug-in 2.2"

Example 2

External (" Serial-Version", "-GetVersionNumber") will return 1100 for version 1.1.
External ("Serial-Version", "-GetVersionNumber") will return 1101 for version 1.1b1
External (" Serial-Version", "-GetVersionNumber") will return 2130 for version 2.1.3

So for example to use afeature introduced with version 1.3 test if the result is equal or greater than 1300.

26

Appendix A: ASCII Table

....... Description
.............. null (end of C string)
............... start of heading
............... start of text
............... end of text
end of transmission
enquiry
............... acknowledge

backspace
. line feed

............... data line escape

device control 2

............... device control 3 (X-OFF)

............... device control 4
..... negative acknowledge
..... synchronousidle
..... end transmission block

..... end of medium

..... substitute

.... Escape

..... file separator

.... group separator
..... record separator
..... unit separator

............................. Description

device control 1 (X-ON)

Table of Contents

Table of Contents

Appendix A: ASCII Table (continued)

	color: [color.blue]
	line: [2]
	style: [border.s]
	FirPagNum: 3
	p1: 1
	p2: 1
	p3: 2
	p4: 2
	p5: 2
	p6: 2
	p7: 3
	p8: 3
	p9: 4
	p10: 4
	1:
	p11: 6
	p12: 8
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	Hidem:
	p13: 8
	p14: 9
	p15: 9
	p16: 12
	p17: 0
	p18: 14
	13:
	14:
	15:
	16:
	18:
	p19: 14
	p21: 16
	p20: 15
	p22: 17
	p28: 25
	p27: 24
	p26: 22
	p25: 21
	p24: 19
	p23: 18
	p29: 26
	p30: 0
	p31: 27
	20:
	19:
	29:
	28:
	27:
	26:
	25:
	24:
	23:
	22:
	21:
	31:
	TOC:
	click: Click on a line to jump to that subject
	www:
	troi:
	com:

	urloserrrs:

