
Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 147

Column #16, June 1996 by Scott Edwards:

Using BS2 Serial Communication:
Serin and Serout Demystified
Plus the ABCs of ASCII Characters

EVERYONE LOVES TO HATE instruction manuals. In the Stamp world, users are
particularly unhappy with the manual’s explanation of the BASIC Stamp II’s deluxe
versions of Serin and Serout.

Rather than rag on the manual, let’s review the fundamentals of serial comms and see if
we can crack the code ourselves.

In BASIC-for-Beginners, we’ll look at a related subject—the ASCII character set.

General Serial Theory

Serin and Serout are used for asynchronous serial communications. In this method, bits
travel one at a time over a single wire.

Bits are sent at a precise speed, called the bit rate and expressed in bits per second (bps)
or baud. The reciprocal of the bit rate is the bit time or bit period—the amount of time
allotted to each bit. For instance, at 2400 bps, each bit gets 1/2400 = 416.67

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

Page 148 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Microseconds (ms). This timing must be pretty accurate for a serial link to work properly,
since timing is the only thing that distinguishes one bit from the next.

The serial signal has two states, traditionally called mark and space. In RS-232 serial,
mark is a negative voltage (–10V) and space is a positive voltage (+10V).

When no data is being transmitted, the signal line idles in the mark (negative) state, also
known as the stop-bit condition. To start a transmission, the sender switches to the start-
bi condition, which is a space (+). It holds the signal line in that state for one bit time.

After the start bit come the data bits. A 1 is represented by a mark (–), and a 0 by a space
(+). Each bit is output for exactly one bit time.

The number of data bits can vary. Some older equipment used as few as five data bits;
today it’s usually eight, but sometimes seven for a text-only setup.

After the data bits, there can be a parity bit, a means of error checking. The transmitting
computer counts the 1s in the data bits, and sets or clears the parity bit to make that count
total an even number. That’s called, appropriately, even parity. The receiver can perform
the same count, and see if it jibes with the received parity bit. If not, the data (or the
parity bit) was received incorrectly.

There are several other parity schemes: odd (opposite of even), space or zero parity parity
bit is always 0), mark or forced parity (parity bit is always 1), or no parity (parity bit left
out entirely).

The last bit of a serial transmission is the stop bit. It’s a return to the mark condition that
existed before the start bit. Even if the sender wants to transmit more data right away, it
must wait one bit time in the stop-bit condition.

Note that some serial devices allow you to specify more than one stop bit. Settings of 1,
1.5 and 2 or more are pretty common. All this means is that the signal will remain in the
stop-bit condition for more than one bit time. This additional breathing room between
data transmissions may be required to give the receiver extra processing time.

The use of opposite start and stop bits is the key to asynchronous communication. The
receiver must identify each incoming bit by its precise time of arrival. It bases its
reckoning of time on the exact instant of the signal’s transition from the stop- to start-bit
state. This allows it to reset its timing with each new arrival of data (called a frame) so
that small timing errors can’t accumulate over many frames to become big timing errors.

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 149

Figure 16.1: One frame of serial data

Not every device that can receive serial data can process it as fast as it might arrive. And
some devices, like the Stamps, must devote all of their attention the serial line in order to
receive data at all. In such cases, the devices may use one or more handshaking bits to
indicate whether or not they are ready to receive. Serial senders are expected to obey
these signals, and send data only when the receiver is ready. Since computer-science
folks like to call serial inputs and outputs streams of data, another term for handshaking
is flow control.

BS2 Serial Theory, Serout

The BS2 has a somewhat bewildering array of serial options. Let’s apply our knowledge
of serial comms to understanding them.

The absolute minimum you must specify in order to send a byte of data from the BS2 are
the pin through which to transmit; the baud rate and mode, combined into a single value
that Parallax calls the baudmode; and the data to send.

If you’re familiar with other computers but not the Stamps, you may be a little puzzled by
the need to specify the pin. Does this mean that the Stamp has multiple serial ports? No.
The Stamps do away with the whole concept of dedicated serial ports, instead treating
serial I/O as just another function of the normal I/O pins. The BS2 does, however, regard
its serial programming connector as a special case—you can use it for serial comms, but
not for conventional pin I/O.

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

Page 150 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Baudmode is a 16-bit numbers that specifies all of the important characteristics of the
serial transmission: the bit time, data and parity bits, polarity, and drive characteristics.
I’ll explain how this works, but if you want to skip the gory details, I’ll understand. Just
look up the combination of standard baud rates and characteristics in Table 16.1.

Table 16.1: One frame of serial data

As shown in Figure 16.2, the lower 13 bits of the baudmode specify the bit period in
microseconds. The BS2’s internal process for organizing and sending the bits apparently
involves 20ms of overhead, so the actual bit period is the baudmode-specified value, plus
20.

Figure 16.2: BS2-IC baudmode dissected

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 151

As the manual points out, you can calculate the bit-period part of the baudmode as
1,000,000/bit rate, minus 20. Use only the integer portion of the result; drop any numbers
to the right of the decimal point.

The three other bits of the baudmode serve as switches for the following serial options:

Data bits and parity. The BS2 supports the two most popular combinations of data bits
and parity: 8 data bits, no parity (abbreviated 8N); and 7 data bits, even parity (7E). A 0
in bit 13 of the baudmode selects 8N; a 1 selects 7E. An easy way to set this bit is by
adding or logically ORing the hex value $2000 with the bit period. (In Stamp notation,
hex numbers begin with the dollar sign $).

Polarity. In our discussion of serial theory above, you may have noticed that the voltages
were backward, with –10V meaning 1 and +10V meaning 0. RS-232 signals are inverted
with respect to the digital convention of 0V = 0 and 5V = 1. So when you want to talk
directly to an RS-232 device, you must select inverted polarity by putting a 1 in bit 14 of
the baudmode (by adding or ORing hex $4000 into it). RS-232 line drivers, chips
designed for converting digital signals to RS-232 voltages, also invert those signals. So to
talk through a line driver you’d put a 0 in bit 14.

Note that if you select the built-in serial connector (pin 16) as the destination of Serout,
the polarity bit has no effect on the output. It’s always sent inverted, which is correct for
a direct connection.

Drive. So far in our discussion of serial communication, we’ve assumed that there were
just two devices involved, one talker and one listener. We haven’t discussed what might
happen if the listener interrupted the talker (by outputting data serially onto the same wire
at the same time), or if there were multiple talkers. Those are the kinds of situations that
arise when you set out to construct a network.

While networking is beyond the scope of this article, you should know that the BS2’s
serial commands can be configured to support it. Writing a 1 to bit 15 of the baudmode
(by adding or ORing hex $8000 into it) selects open-drain or open-source signaling,
depending on the polarity. The important thing to know about these “open” settings is
that they only drive to one power-supply rail or the other, but not both. This can be used
to let multiple Stamp drive the same signal line without damaging each other. See
Parallax application note no. 14 for more on networking illustrated with an example for
the BS1.

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

Page 152 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

All of the examples we’ll present here will be non-network situations in which the serial
pin is always driven to the appropriate power-supply rail.

Serout Examples

Armed with all of the foregoing information, we’re ready to craft some BS2 Serouts. The
general form of the instructions:

Serout tpin,baudmode,{pace,}[outputdata]

where tpin is the pin to transmit through; baudmode is the setting for bit rate, data
bits/parity, polarity and drive; pace is an optional delay in milliseconds (ms) between
bytes; and output data is, well, output data. For example:

Serout 1,16468,["HELLO!"]

would transmit the message HELLO! Through pin 1 at 9600 baud, 8N, inverted, with
non-network drive. (Baudmode from Table 16.1.) Another example:

Serout 1,16468,[65]

This time, the output data is the value 65. If you were looking at the serial output of this
instruction on a terminal (serial communication program) screen, what would you see? If
you said “65” make an obnoxious buzzer sound, ’cause you’re wrong. Serout would send
a single byte whose bits total up to equal the decimal number 65. A terminal screen
displays this byte by looking up the corresponding symbol from the ASCII character set,
which is “A.” If you really wanted to see “65” instead, you would write:

Serout 1,16468,[DEC 65]

The DEC modifier, short for “decimal” tells PBASIC to convert the single-byte value 65
into text representing the decimal number 65. There are 24 of these nifty formatting
modifiers listed under Debug in the BS2 manual. (Debug is just a special case of Serout.)
Ready for another?

numba var byte
numba = 65
Serout 1,16468,[numba,cr]
Serout 1,16468,[DEC numba]

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 153

The first Serout sends the contents of the byte variable numba. Since numba contains 65,
a terminal would show “A.” The symbol “cr” after numba represents the value 13, which
is the ASCII code for a carriage return. So the receiving terminal would return to the left
margin of the screen. If set up properly, it would also hop down to the next line, but that
issue is between you and the maker of your terminal software.

The second Serout would cause the text “65” to appear on the screen.

Let’s return to our original example for a moment. Suppose you wanted to drag out the
message, sending one character per second. You’d just need to add a optional pacing
value, like so:

Serout 1,16468,1000,["HELLO!"]

The BS2 would insert a 1000-ms delay after every byte: H <pause> E <pause>... Why
would you want to do this? Probably to accommodate a device that needed time to digest
each byte after it arrived. For example, say the BS2 was talking to a BS1, which took
each incoming byte and copied it to EEPROM. The BS1 would need more than one stop-
bit time to prepare for the next byte, so pacing could save the day.

If you want to communicate between BS2s, there’s an even better option: flow control.
With flow control, the receiving BS2 tells the sending BS2 when to transmit each byte.
The general form of a flow-controlled Serout is:

Serout tpin\fpin,baudmode,{tOpt,}[outputdata]

where fpin is the pin that controls the flow of serial-output data. We’ll talk about the
timeout options—tOpt in the example above—later. Fpin’s control logic depends on the
data polarity established by baudmode; if it’s set for noninverted data, then a 0 on fpin
starts data transmission and 1 stops it. If polarity is set for inverted data, a 1 on fpin starts
transmission and 0 stops it. Note that the polarity sets the logic of the fpin even if
Serout’s destination is the built-in serial connector (which always outputs inverted for
compatibility with PC serial ports).

Suppose you connected two BS2s together for flow-controlled serial communications—
pins P0 to P0 and P1 to P1. The programs’ Serout and Serin instructions might look like
this:

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

Page 154 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

TRANSMITTER:

Serout 0\1,16468,["HELLO!"]

RECEIVER :

Serin 0\1,16468,[variableName]

On the receiving end, we’re assuming that the Serin instruction is enclosed within a loop
which will repeat to gather up each byte of the transmitted message. Otherwise, it would
grab just the first byte, and leave the transmitter in the lurch waiting for permission to
send the rest.

That possibility, that the receiver would stop asking for bytes of data before the
transmitter has sent its entire message, is the purpose of the timeout options, abbreviated
tOpt above. These options specify two things: how long the BS2 should wait for
permission to send a pending byte of data, and what part of the program it should go to in
the event that permission doesn’t arrive in time.

Here’s a Serout example with the timeout options enabled.

Serout 0\1,16468,100,xmitFailed,["HELLO!"]

The portions in boldface type are the timeout options. The first specifies that the BS2 will
wait 100 milliseconds; the second tells it to go to the program label xmitFailed in the
event that more than 100 ms passes without permission to send one of the bytes of the
message.

A couple of final notes on flow-controlled Serouts are in order. First, beware of using the
wrong slant bar between tpin and fpin. You want a backslash (\) not a forward slash(/).
PBASIC won’t generate an error if you use a forward slash, because it will think that
you’re specifying the tpin number as one value divided by another: x/y.

Second, be aware that you cannot combine flow-control with pacing. The reason should
be obvious—if the state of a pin is telling the BS2 when to send the next byte, a pacing
delay is irrelevant.

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 155

BS2 Serial Theory, Serin

Once you understand the Serout options, Serin is pretty easy. The basic form is:

Serin rpin,baudmode,[inputdata]

where rpin is the pin to receive through; baudmode is the setting for bit rate, data
bits/parity, polarity and drive; and input data specifies what to do with the incoming data
(ignore it; compare it to a string; store it in a variable; or convert it from text to a numeric
value and then store it in a variable). Let’s look at a simple example:

serData var byte
Serin 1,16468,[serData]

The baudmode—the same one used in the examples above—sets 9600 baud, 8N,
inverted. Serin would wait for and receive a single byte of data through pin 1 and store it
in the byte variable serData. Here’s a variation:

serData var byte
Serin 1,16468,[DEC serData]

In this case, the DEC modifier tells Serin to wait for numeric text (like typing the
numbers “1,2,3...” from a terminal keyboard) and to convert that text into a one-byte
value (range 0 to 255). There are quite a few input formatting modifiers for decimal, hex,
and binary numbers. See the manual for a complete list of choices.

In the theory discussion above, we talked about parity serving as a simple means of error
checking. If you specify a 7E baudmode, the BS2 will accept the parity bit. Optionally,
you can tell the BS2 what part of your program to go to in the event of a parity error. Just
put the label for the routine right after baudmode, like so:

Serin 1,24660,parityErr,[inputdata]

If the data is received correctly—or at least the parity bit indicates that it was received
correctly—your program will continue on the next line. If the parity bit is incorrect, the
program will go to the label parityErr. If you’re using a non-parity baudmode, Serin will
not go to parityErr. And if you do specify parity, but don’t supply a label to go to in the
event of an error, PBASIC ignores the error.

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

Page 156 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Serin includes a flow-control option that complements the one supported by Serout. As
we showed in the Serout section above, you can connect one BS2 to another and
communicate with byte-by-byte handshaking. For example, suppose the program
surrounding the “Receiver” code in the Serout section looked like this:

letta var byte
again:
 Serin 0\1,16468,[letta]
 debug letta
 pause 1000
goto again

The two BS2s would cooperate perfectly; the letters of the transmitted string would be
displayed one at a time at 1-second intervals. That’s because the BS2 can turn its serial
flow on and off in one-byte doses. So what? Well, PCs generally do not control their
serial flow so tightly. They can continue to emit as many as eight bytes of serial data after
being told to stop! And some programs ignore hardware flow control entirely. To get
finer control over the comm port requires low-level PC programming that’s beyond the
scope of this article. Just be aware that a BS2 application that depends on byte-by-byte
handshaking with a PC is going to be considerably more involved on the PC end
than you might expect.

Just as Serout has options for dealing with timeouts, Serin can time out if it doesn’t
receive data within a prescribed time. Unlike Serout, Serin’s timeout option is not tied to
flow control. All that matters is whether or not serial data arrived in time. Here’s the
general form of the instruction:

Serin rpin,baudmode,{tOpt,}[inputdata]

The timeout option, tOpt, consists of a number of milliseconds to wait, and a program
label to go to in the event that no data arrives within that time. For instance:

Serin 4,16780,10000,noSerialData,[inputdata]

That instruction would accept inverted serial data through pin 4 at 2400 baud. If no data
arrived within 10 seconds (10,000 milliseconds), the program would go to the label
noSerialData. Otherwise, it would receive the data and continue with the next instruction.
Serin’s timeouts can be combined with any of its other options.

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 157

Don’t be cookbook-codependent!

The BS2’s Serin and Serout instructions have so many possible variations and
combinations that I almost certainly didn’t show you exactly what you need for your next
application. And I could fill every page of this magazine, and still not hit every
possibility. Remember that there are 65,536 possible baudmodes alone!

My point is that you shouldn’t depend on explicit recipes for programming. A nudge in
the right direction should be enough. Don’t be afraid to experiment, explore blind alleys,
make mistakes, or even waste some time getting your project working. Don’t condemn
the time you spend figuring things out on your own as “reinventing the wheel.” What
you’re really doing is learning in a way that carves deep gullies in your gray matter.

This pep talk arises out of my concern over things I see on the Internet and
communications I receive from readers. Many people seem to be so terrified of doing
original work that they spend more time searching for someone else’s solution than they
would formulating their own. They may accomplish the task at hand with a borrowed
answer, but they deprive themselves of the opportunity to improve their skills.

BASIC for Beginners

Last month I took you on a whirlwind tour of the decimal, binary, and hexadecimal
numbering systems. You saw that there’s more than one way to represent a given
number.

This time we’ll look at how numbers themselves can represent text, like ABC, *@%^!
and even 1,2,3...

Digital circuits, including Stamps, can only manipulate bits. When we looked at systems
of numbers, we could readily see how bits could be clumped together into groups like
bytes and words and used to express numbers. A byte, consisting of eight bits, can
express 256 different values from 0 to 255.

But one of the most common uses of desktop computers is to process text. How do they
handle that?

As far as the processor is concerned, there is no distinction between text and numbers.
Everything consists of bits, bytes, and words (clusters of 16 or more bits). It’s the job of a
program to decide whether a particular piece of data is a number or a chunk of text.

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

Page 158 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

Since text-based applications are so important, the computer industry early on worked out
a standard system of numbers to represent the keys of a typewriter keyboard as well as
special control characters significant to devices like printers and display terminals.

This system is called the American Standard Code for Information Interchange, ASCII
(asskey) for short. ASCII traditionally uses seven bits of a byte to provide a total of 128
different codes, but most computers also recognize and use the additional 128 possible
byte codes to extend the ASCII symbol set with graphics symbols, foreign-language
characters, and special punctuation. These so-called high-ASCII characters are not
standardized.

Table 16.2 presents the ASCII character set, with its code-number equivalents.

Knowing about ASCII becomes important when you are using the Stamp for serial
communication. If you want to send the value of a byte variable, you must decide
whether you want it sent as text—a sequence of ASCII symbols—or as a single byte.

An example: Suppose byte variable b2 contains 105. You use Serout to send it to your
PC running a terminal communication program. On a BS1-type stamp, the instruction
would be:

Serout 0,N2400,(b2)

The Stamp transmits eight bits: 01101001. Your PC displays a single character: “i.” The
terminal program is expecting text, so it interprets that byte as the its ASCII symbol
(Table 16.2).

If you wanted the PC to display a human-readable number showing the value of b2, you
would change that instruction to read:

Serout 0,N2400,(#b2)

The number sign (#) tells PBASIC to convert the binary value of b2 into corresponding
decimal digits, and to send the ASCII symbols for those digits out serially. So the Stamp
would send three bytes, 00110001 00110000 00110101, to the PC. Those bytes are
ASCII codes for 49 48 53, which correspond to the symbols “105.”

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

The Nuts and Volts of BASIC Stamps (Volume 1) •••• Page 159

Table 16.2: The ASCII Character Set

Spend a few minutes browsing the ASCII table and notice a few details:

• The numbers 0 through 9 are arranged in order starting at code 48. So to convert
a single text digit to its numeric equivalent, all you need to do is subtract 48
from the ASCII code.

• The letters of the alphabet are arranged in order, starting at code 65 for
uppercase and 97 for lowercase. If you need to alphabetize text, you simply
arrange items in order of their ASCII codes.

Column #16: Using BS2-IC Serial Communication: SERIN and SEROUT Demystified

Page 160 •••• The Nuts and Volts of BASIC Stamps (Volume 1)

• The ASCII codes for corresponding upper-and lower-case letters differ by 32:
capital H is code 72, while small h is 72 + 32 = 104. This makes for an easy way
to convert lowercase to uppercase; just perform a logical AND of the value with
the hex value $0DF. This can be very useful for accepting typed instructions
from a terminal program.

There’s no need to memorize the ASCII symbol set; just bear in mind that it exists. And
when your Stamp program cusses at you— *@%^!—it may just be reminding you to use
#.

